參考文獻 |
[1] D. Barthels and H. Das, “Current advances in ischemic stroke research and therapies,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1866, no. 4, p. 165260, Apr. 2020, doi: 10.1016/j.bbadis.2018.09.012.
[2] 統計處, “歷年統計,” 統計處. Accessed: Jun. 11, 2024. [Online]. Available: https://dep.mohw.gov.tw/DOS/lp-5069-113.html
[3] “Classification of Stroke Subtypes | Cerebrovascular Diseases | Karger Publishers.” Accessed: Jun. 13, 2024. [Online]. Available: https://karger.com/ced/article/27/5/493/69218/Classification-of-Stroke-Subtypes
[4] L. Wang, X. Xiong, L. Zhang, and J. Shen, “Neurovascular Unit: A critical role in ischemic stroke,” CNS Neuroscience & Therapeutics, vol. 27, no. 1, pp. 7–16, 2021, doi: 10.1111/cns.13561.
[5] H. Kato and K. Kogure, “Biochemical and Molecular Characteristics of the Brain with Developing Cerebral Infarction,” Cell Mol Neurobiol, vol. 19, no. 1, pp. 93–108, Feb. 1999, doi: 10.1023/A:1006920725663.
[6] “Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications”, doi: 10.1002/med.21817.
[7] F. Gariel et al., “Mechanical Thrombectomy Outcomes With or Without Intravenous Thrombolysis,” Stroke, vol. 49, no. 10, pp. 2383–2390, Oct. 2018, doi: 10.1161/STROKEAHA.118.021500.
[8] M. Goyal et al., “Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials,” The Lancet, vol. 387, no. 10029, pp. 1723–1731, Apr. 2016, doi: 10.1016/S0140-6736(16)00163-X.
[9] M. U. Jang et al., “In-Hospital and Post-Discharge Recovery after Acute Ischemic Stroke: a Nationwide Multicenter Stroke Registry-base Study,” Journal of Korean Medical Science, vol. 34, no. 36, Aug. 2019, doi: 10.3346/jkms.2019.34.e240.
[10] “CT for Treatment Selection in Acute Ischemic Stroke: A Code Stroke Primer | RadioGraphics.” Accessed: Jun. 13, 2024. [Online]. Available: https://pubs.rsna.org/doi/10.1148/rg.2019190142
[11] Albers Gregory W. et al., “Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging,” New England Journal of Medicine, vol. 378, no. 8, pp. 708–718, Feb. 2018, doi: 10.1056/NEJMoa1713973.
[12] S.-J. Peng, Y.-W. Chen, J.-Y. Yang, K.-W. Wang, and J.-Z. Tsai, “Automated Cerebral Infarct Detection on Computed Tomography Images Based on Deep Learning,” Biomedicines, vol. 10, no. 1, p. 122, Jan. 2022, doi: 10.3390/biomedicines10010122.
[13] M. Brett, I. S. Johnsrude, and A. M. Owen, “The problem of functional localization in the human brain,” Nat Rev Neurosci, vol. 3, no. 3, pp. 243–249, Mar. 2002, doi: 10.1038/nrn756.
[14] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” May 18, 2015, arXiv: arXiv:1505.04597. doi: 10.48550/arXiv.1505.04597.
[15] W.-C. Wang et al., “Automated delineation of acute ischemic stroke lesions on non-contrast CT using 3D deep learning: A promising step towards efficient diagnosis and treatment,” Biomedical Signal Processing and Control, vol. 93, p. 106139, Jul. 2024, doi: 10.1016/j.bspc.2024.106139.
[16] G. N. Hounsfield, “Computed medical imaging,” Science, vol. 210, no. 4465, pp. 22–28, Oct. 1980, doi: 10.1126/science.6997993.
[17] Z. Xue, S. Antani, L. R. Long, D. Demner-Fushman, and G. R. Thoma, “Window Classification of Brain CT Images in Biomedical Articles,” AMIA Annu Symp Proc, vol. 2012, pp. 1023–1029, Nov. 2012.
[18] P. J. Turner and G. Holdsworth, “CT stroke window settings: an unfortunate misleading misnomer?,” Br J Radiol, vol. 84, no. 1008, pp. 1061–1066, Dec. 2011, doi: 10.1259/bjr/99730184.
[19] “SPM12 Software - Statistical Parametric Mapping.” Accessed: Jun. 13, 2024. [Online]. Available: https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
[20] T. P. Naidich, D. L. Daniels, P. Pech, V. M. Haughton, A. Williams, and K. Pojunas, “Anterior commissure: anatomic-MR correlation and use as a landmark in three orthogonal planes.,” Radiology, vol. 158, no. 2, pp. 421–429, Feb. 1986, doi: 10.1148/radiology.158.2.3941867.
[21] S.-J. Peng, “以磁振造影探究有病灶及無病灶神經疾病的自動偵測方法之開發,” 中央大學電機工程學系學位論文, vol. 2014, pp. 1–137, Jan. 2014.
[22] “Body MRI artifacts in clinical practice: A physicist’s and radiologist’s perspective - Graves - 2013 - Journal of Magnetic Resonance Imaging - Wiley Online Library.” Accessed: Jun. 13, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/jmri.24288
[23] “ITK-SNAP Home.” Accessed: Jun. 13, 2024. [Online]. Available: http://www.itksnap.org/pmwiki/pmwiki.php
[24] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 2980–2988. doi: 10.1109/ICCV.2017.322.
[25] K. Kamnitsas et al., “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation,” Medical Image Analysis, vol. 36, pp. 61–78, Feb. 2017, doi: 10.1016/j.media.2016.10.004.
[26] S. Li, J. Zheng, and D. Li, “Precise segmentation of non-enhanced computed tomography in patients with ischemic stroke based on multi-scale U-Net deep network model,” Computer Methods and Programs in Biomedicine, vol. 208, p. 106278, Sep. 2021, doi: 10.1016/j.cmpb.2021.106278.
[27] H. Kuang, B. K. Menon, and W. Qiu, “Semi-automated infarct segmentation from follow-up noncontrast CT scans in patients with acute ischemic stroke,” Medical Physics, vol. 46, no. 9, pp. 4037–4045, 2019, doi: 10.1002/mp.13703.
[28] M. Soltanpour, R. Greiner, P. Boulanger, and B. Buck, “Improvement of automatic ischemic stroke lesion segmentation in CT perfusion maps using a learned deep neural network,” Computers in Biology and Medicine, vol. 137, p. 104849, Oct. 2021, doi: 10.1016/j.compbiomed.2021.104849.
[29] H. Kuang, B. K. Menon, and W. Qiu, “Segmenting Hemorrhagic and Ischemic Infarct Simultaneously From Follow-Up Non-Contrast CT Images in Patients With Acute Ischemic Stroke,” IEEE Access, vol. 7, pp. 39842–39851, 2019, doi: 10.1109/ACCESS.2019.2906605.
[30] Z. Xu and C. Ding, “Combining convolutional attention mechanism and residual deformable Transformer for infarct segmentation from CT scans of acute ischemic stroke patients,” Front Neurol, vol. 14, p. 1178637, 2023, doi: 10.3389/fneur.2023.1178637.
[31] R. Sales Barros et al., “Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks,” J Neurointerv Surg, vol. 12, no. 9, pp. 848–852, Sep. 2020, doi: 10.1136/neurintsurg-2019-015471.
[32] K. Liang et al., “Symmetry-Enhanced Attention Network for Acute Ischemic Infarct Segmentation with Non-Contrast CT Images,” vol. 12907, 2021, pp. 432–441. doi: 10.1007/978-3-030-87234-2_41.
[33] H. El-Hariri et al., “Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke,” Comput Biol Med, vol. 141, p. 105033, Feb. 2022, doi: 10.1016/j.compbiomed.2021.105033.
[34] H. Ni et al., “Asymmetry Disentanglement Network for Interpretable Acute Ischemic Stroke Infarct Segmentation in Non-Contrast CT Scans,” Jun. 30, 2022, arXiv: arXiv:2206.15445. doi: 10.48550/arXiv.2206.15445.
[35] H. Nishi et al., “Automatic Ischemic Core Estimation Based on Noncontrast-Enhanced Computed Tomography,” Stroke, vol. 54, no. 7, pp. 1815–1822, Jul. 2023, doi: 10.1161/STROKEAHA.123.042689.
[36] H. Kuang, B. K. Menon, S. I. Sohn, and W. Qiu, “EIS-Net: Segmenting early infarct and scoring ASPECTS simultaneously on non-contrast CT of patients with acute ischemic stroke,” Med Image Anal, vol. 70, p. 101984, May 2021, doi: 10.1016/j.media.2021.101984.
[37] J. Zhang, T. Wan, E. MacDonald, B. Menon, A. Ganesh, and Q. Wu, “Synchronous Image-Label Diffusion Probability Model with Application to Stroke Lesion Segmentation on Non-contrast CT,” Jul. 18, 2023, arXiv: arXiv:2307.01740. doi: 10.48550/arXiv.2307.01740. |