博碩士論文 111526001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.222.116.87
姓名 蔡時富(Shih-Fu Tsai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用大型語言模型進行機器控制指令的自動化生成
(Automated Generation of Machine Control Commands Using Large Language Models)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 基於檢驗數值的糖尿病腎病變預測模型
★ 模糊類神經網路為架構之遙測影像分類器設計★ 複合式群聚演算法
★ 身心障礙者輔具之研製★ 指紋分類器之研究
★ 背光影像補償及色彩減量之研究★ 類神經網路於營利事業所得稅選案之應用
★ 一個新的線上學習系統及其於稅務選案上之應用★ 人眼追蹤系統及其於人機介面之應用
★ 結合群體智慧與自我組織映射圖的資料視覺化研究★ 追瞳系統之研發於身障者之人機介面應用
★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用★ 基因演算法於語音聲紋解攪拌之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討了如何透過大型語言模型(Large Language Model, LLM),將自然語言轉換為程式碼來控制機器。研究內容涵蓋背景知識、文獻回顧、研究方法、實驗設計與結果。

在背景知識和文獻回顧部分,首先介紹了大型語言模型的研究現況、智慧機器、人工智慧物聯網的應用場景與3D列印技術的發展現況。接著,回顧了自動程式碼生成在機器控制領域應用、運動學研究與機器人控制與3D列印近年來發展的相關文獻。

研究方法部分描述了硬體設計的流程細節,包括模型設計軟體、檔案輸出格式、3D列印的使用,以及馬達與開發版的介紹。軟體設計流程方面,介紹了運動模擬環境、運動學開發,與大型語言模型以及其官方應用程式介面的使用,最後,系統架構章節詳細介紹了系統架構圖、系統流程圖等整體程式框架。

實驗設計與結果部分包含三個實驗。分別為機械臂的基本控制、機械臂應用於畫圖與機械臂在自動運輸車上的應用,其中展示了機械結構設計圖、函數設計、下達指令的格式、實驗過程縮圖以及最後的實驗成效總結。

而實驗結果顯示,使用大型語言模型生成程式碼來控制機器的方式擁有相當高的準確度,尤其在有較明確的機器函式庫的前提下,更能透過少量的指令輸入,獲得高品質生成效率和準確度。然而,隨著硬體的增多和系統的複雜性增加,也面臨了一些需要克服的機械性失誤。未來的研究將繼續優化系統的穩定性和精確度,進一步提升其應用價值。
摘要(英) This study explores how to use Large Language Models (LLMs) to translate natural language into code to control machines. The research encompasses background knowledge, literature review, research methods, experimental design, and results.

In the background knowledge and literature review section, the current state of research on large language models, intelligent machines, applications of AI in the Internet of Things, and the development status of 3D printing technology are introduced. Next, relevant literature on the application of automatic code generation in the field of machine control, kinematics research, robotic control, and recent developments in 3D printing are reviewed.

The research methods section details the hardware design process, including the model design software, file output formats, the use of 3D printing, and an introduction to motors and development boards. Regarding the software design process, the motion simulation environment, kinematics development, and the use of large language models and their official application programming interfaces are introduced. Finally, the system architecture chapter provides detailed descriptions of the system architecture diagram, system flowchart, and the overall program framework.

The experimental design and results section includes three experiments: basic control of a robotic arm, the application of the robotic arm in drawing, and the application of the robotic arm on an automatic transport vehicle. This section showcases mechanical design diagrams, function design, command formats, experiment process snapshots, and a summary of the final experimental outcomes.

The experimental results indicate that using large language models to generate code to control machines demonstrates considerable accuracy. Especially when clear machine function libraries are available, high-quality generation efficiency and accuracy can be achieved with minimal command input. However, with the increase in hardware and system complexity, some mechanical errors need to be addressed. Future research will continue to optimize system stability and accuracy, further enhancing its application value.
關鍵字(中) ★ 自動程式碼生成
★ 3D列印
★ 機器控制
★ 智慧機器
★ 大型語言模型
關鍵字(英) ★ Auto Generation
★ 3D Printing
★ Machine Control
★ Smart Machines
★ Large Language Models
論文目次 摘要 iv
Abstract vi
誌謝 viii
目錄 xii
一、 緒論 1
1.1 研究動機 .................................................................. 1
1.2 研究目的 .................................................................. 2
1.3 論文架構 .................................................................. 2
二、 背景知識以及文獻回顧 4
2.1 背景知識 .................................................................. 4
2.1.1 大型語言模型的研究現況 .................................... 4
2.1.2 智慧機器與人工智慧物聯網的應用場景 .................. 6
2.1.3 3D 列印技術的發展現況...................................... 7
2.2 文獻回顧 .................................................................. 8
2.2.1 大型語言模型及其在程式碼生成與機器控制上的應
用 ........................................................................... 8
2.2.2 運動學研究與機器人控制 .................................... 9
2.2.3 3D 列印應用於機器人製作的相關文獻.................... 15
三、 研究方法 17
3.1 硬體設計流程 ............................................................ 17
3.1.1 模型設計軟體:Autodesk Fusion 360....................... 17
3.1.2 檔案輸出格式:STL(Stereolithography)................ 18
3.1.3 3D 列印機:Creality K1 MAX ............................... 19
3.1.4 馬達與開發版介紹 ............................................. 20
3.2 運動學開發 ............................................................... 23
3.2.1 運動模擬環境 ................................................... 23
3.2.2 順向運動學 ...................................................... 24
3.2.3 逆向運動學 ...................................................... 24
3.3 大型語言模型開發 ...................................................... 25
3.3.1 OpenAI 與 GPT 模型........................................... 25
3.3.2 模型使用流程 ................................................... 25
3.4 系統架構 .................................................................. 28
3.4.1 系統架構與流程 ................................................ 28
四、 實驗設計與結果 30
4.1 實驗一:機械臂的基本控制 .......................................... 30
4.1.1 機械結構設計圖 ................................................ 30
4.1.2 函數設計 ......................................................... 33
4.1.3 下達指令的格式範例 .......................................... 34
4.1.4 實驗結果 ......................................................... 36
4.2 實驗二:將機械臂用於畫圖 .......................................... 38
4.2.1 機械結構設計圖 ................................................ 38
4.2.2 函數設計 ......................................................... 41
4.2.3 下達指令的格式範例 .......................................... 42
4.2.4 實驗結果 ......................................................... 43
4.3 實驗三:機械臂在自動運輸車上的應用 ........................... 45
4.3.1 機械結構設計圖 ................................................ 45
4.3.2 函數設計 ......................................................... 48
4.3.3 下達指令的格式範例 .......................................... 49
4.3.4 實驗結果 ......................................................... 50
4.4 實驗四:機械臂在自動運輸車上的進階應用 ..................... 52
4.4.1 機械結構設計圖 ................................................ 52
4.4.2 函數設計 ......................................................... 52
4.4.3 下達指令的格式範例 .......................................... 53
4.4.4 實驗結果 ......................................................... 55
五、 總結 57
5.1 結論 ........................................................................ 57
5.2 未來展望 .................................................................. 58
參考文獻 59
參考文獻 [1] D. Reed, D. Gannon, and J. Dongarra, Reinventing high performance computing: Challenges and opportunities, 2022.
[2] W. X. Zhao, K. Zhou, J. Li, et al., A survey of large language models, 2023.
[3] Y. Liu, T. Han, S. Ma, et al., “Summary of chatgpt-related research and perspective towards the future of large language models,” Meta-Radiology, vol. 1, no. 2, p. 100 017,
Sep. 2023.
[4] H. Touvron, L. Martin, K. Stone, et al., Llama 2: Open foundation and fine-tuned chat
models, 2023.
[5] G. Team, R. Anil, S. Borgeaud, et al., Gemini: A family of highly capable multimodal
models, 2024.
[6] Y. Feng, S. Vanam, M. Cherukupally, W. Zheng, M. Qiu, and H. Chen, “Investigating
code generation performance of chatgpt with crowdsourcing social data,” in 2023 IEEE
47th Annual Computers, Software, and Applications Conference (COMPSAC), 2023,
pp. 876–885.
[7] K. Chowdhary and K. Chowdhary, “Natural language processing,” Fundamentals of artificial intelligence, pp. 603–649, 2020.
[8] Y. Kim, Y. Jernite, D. Sontag, and A. Rush, “Character-aware neural language models,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 30, 2016.
[9] T. Wolf, L. Debut, V. Sanh, et al., “Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Q. Liu and D. Schlangen, Eds., Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45.
[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, 2019.
[11] C. Cui, Y. Ma, X. Cao, et al., A survey on multimodal large language models for autonomous driving, 2023.
[12] R. Cai, Z. Song, D. Guan, et al., Benchlmm: Benchmarking cross-style visual capability
of large multimodal models, 2023.
[13] J. Zhang and D. Tao, “Empowering things with intelligence: A survey of the progress,
challenges, and opportunities in artificial intelligence of things,” IEEE Internet of Things
Journal, vol. 8, no. 10, pp. 7789–7817, 2021.
[14] I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to explainable artificial
intelligence in industry 4.0: A survey on what, how, and where,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 8, pp. 5031–5042, 2022.
[15] R. Cupek, J. C.-W. Lin, and J. H. Syu, “Automated guided vehicles challenges for artificial intelligence,” in 2022 IEEE International Conference on Big Data (Big Data), 2022,
pp. 6281–6289.
[16] T. Le Nguyen and T. T. H. Do, “Artificial intelligence in healthcare: A new technology
benefit for both patients and doctors,” in 2019 Portland International Conference on
Management of Engineering and Technology (PICMET), 2019, pp. 1–15.
[17] M. Sarcar, K. M. Rao, and K. L. Narayan, Computer aided design and manufacturing.
PHI Learning Pvt. Ltd., 2008.
[18] C. Elanchezhian and G. S. Sundar, Computer aided manufacturing. Firewall Media,
2007.
[19] G. Thyer, Computer numerical control of machine tools. Elsevier, 2014.
[20] D. Pham and R. Gault, “A comparison of rapid prototyping technologies,” International
Journal of Machine Tools and Manufacture, vol. 38, no. 10, pp. 1257–1287, 1998.
[21] K. V. Wong and A. Hernandez, “A review of additive manufacturing,” International
scholarly research notices, vol. 2012, 2012.
[22] N. Shahrubudin, T. C. Lee, and R. Ramlan, “An overview on 3d printing technology:
Technological, materials, and applications,” Procedia Manufacturing, vol. 35, pp. 1286–
1296, 2019.
[23] I. Hager, A. Golonka, and R. Putanowicz, “3d printing of buildings and building components as the future of sustainable construction?” Procedia Engineering, vol. 151, pp. 292–
299, 2016.
[24] S. K. Moon, Y. E. Tan, J. Hwang, and Y.-J. Yoon, “Application of 3d printing technology
for designing light-weight unmanned aerial vehicle wing structures,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 1, pp. 223–228,
2014.
[25] M. Chinthavali, “3d printing technology for automotive applications,” in 2016 International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM),
IEEE, 2016, pp. 1–13.
[26] T. G. Papaioannou, D. Manolesou, E. Dimakakos, G. Tsoucalas, M. Vavuranakis, and
D. Tousoulis, “3d bioprinting methods and techniques: Applications on artificial blood
vessel fabrication,” Acta Cardiologica Sinica, vol. 35, no. 3, p. 284, 2019.
[27] Z. Liu, M. Zhang, B. Bhandari, and Y. Wang, “3d printing: Printing precision and application in food sector,” Trends in Food Science & Technology, vol. 69, pp. 83–94, 2017.
[28] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experience: Evaluating the usability of code generation tools powered by large language models,” in Chi
conference on human factors in computing systems extended abstracts, 2022, pp. 1–7.
[29] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, Chatgpt for robotics: Design principles and model abilities, 2023.
[30] J. Liang, W. Huang, F. Xia, et al., “Code as policies: Language model programs for
embodied control,” in 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 9493–9500.
[31] S. Kucuk and Z. Bingul, Robot kinematics: Forward and inverse kinematics. INTECH
Open Access Publisher London, UK, 2006.
[32] A. K. Singh, N. Baranwal, and G. C. Nandi, “Development of a self reliant humanoid
robot for sketch drawing,” Multimedia Tools and Applications, vol. 76, pp. 18 847–18 870,
2017.
[33] R. Siemasz, K. Tomczuk, and Z. Malecha, “3d printed robotic arm with elements of
artificial intelligence,” Procedia Computer Science, vol. 176, pp. 3741–3750, 2020.
[34] J. Z. Gul, M. Sajid, M. M. Rehman, et al., “3d printing for soft robotics–a review,” Science and technology of advanced materials, vol. 19, no. 1, pp. 243–262, 2018.
[35] X. Zhang, M. Li, J. H. Lim, et al., “Large-scale 3d printing by a team of mobile robots,”
Automation in Construction, vol. 95, pp. 98–106, 2018.
[36] autodesk. “Autodesk-fusion-360.” (2024), [Online]. Available: https://www.autodesk.
com.tw/ (visited on 06/07/2024).
[37] 3dsystems. “Stl-formate.” (2024), [Online]. Available: https:// www. 3dsystems. com/
(visited on 06/07/2024).
[38] creality. “Creality-k1-max-3d-printer.” (2024), [Online]. Available: https://www.creality.
com/ (visited on 06/07/2024).
[39] T. Pro. “Sg90 servo motor.” (2024), [Online]. Available: https://www.servodatabase.
com/servo/towerpro/sg90 (visited on 06/07/2024).
[40] T. Pro. “Mg90s servo motor.” (2024), [Online]. Available: https://www.servodatabase.
com/servo/towerpro/mg90s (visited on 06/07/2024).
[41] T. Pro. “Mg996r servo motor.” (2024), [Online]. Available: https://www.servodatabase.
com/servo/towerpro/mg996r (visited on 06/07/2024).
[42] R. P. Foundation. “Raspberry pi 4 model b.” (2024), [Online]. Available: https://www.
raspberrypi.com/products/raspberry-pi-4-model-b/ (visited on 06/07/2024).
[43] E. Systems. “Esp32-s3-devkitc-1.” (2024), [Online]. Available: https://www.espressif.
com/en/products/devkits/esp32-s3-devkitc-1/overview (visited on 06/07/2024).
[44] E. Systems. “Esp32-devkitc.” (2024), [Online]. Available: https://www.espressif.com/
en/products/devkits/esp32-devkitc/overview (visited on 06/07/2024).
[45] STMicroelectronics. “L298n motor driver module.” (2024), [Online]. Available: https:
//www.st.com/en/motor-drivers/l298.html (visited on 06/07/2024).
[46] N. Semiconductors. “Pca9685 16-channel 12-bit pwm servo driver.” (2024), [Online].
Available: https://www.nxp.com/products/interfaces/ic - bus/ic - led - controllers/16 -
channel-12-bit-pwm-fm-plus-ic-bus-led-controller:PCA9685 (visited on 06/07/2024).
指導教授 蘇木春(Mu-Chun Su) 審核日期 2024-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明