參考文獻 |
[1] IEEE Power and Energy Society, IEEE Standard for the Specification of Microgrid Controllers IEEE Standard for the Specification of Microgrid Controllers, IEEE Standard 2030. 7/8, 2017, pp. 1–42.
[2] J. S. Gomez, D. Saez, J. W. Simpson-Porco, and R. Cardenas, “Distributed predictive control for frequency and voltage regulation in microgrids,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1319–1329, Mar. 2020.
[3] J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo, “Secondary frequency and voltage control of islanded microgrids via distributed averaging,” IEEE Trans. Ind.Electron., vol. 62, no. 11, pp. 7025–7038, May. 2015.
[4] Y. Han, K. Zhang, H. Li, E. A. A. Coelho, and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview,” IEEE Trans.Power Electron., vol. 33, no. 8, pp. 6488–6508, Aug. 2018.
[5] E. Espina, J. Llanos, C. Burgos-Mellado, R. Cardenas-Dobson, M. Martinez-Gomez, and D. Saez, “Distributed control strategies for microgrids: An overview,” IEEE Access, vol. 8, pp. 193412–193448, 2020.
[6] Y. Xia, W. Wei, M. Yu, X. Wang, and Y. Peng, “Power management for a hybrid AC/DC microgrid with multiple subgrids,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3520–3533, Apr. 2018.
[7] M. Hosseinzadeh and F. R. Salmasi, “Robust optimal power management system for a hybrid AC/DC microgrid,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 675–687, Jul. 2015.
[8] M. Manbachi and M. Ordonez, “AMI-based energy management for islanded AC/DC microgrids utilizing energy conservation and optimization,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 293–304, Jan. 2019.
[9] P. Wang, X. Lu, X. Yang, W. Wang, and D. Xu, “An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance,” IEEE Trans. Power Electron., vol.31, no. 9, pp. 6658–6673, Sep. 2016.
[10] J. Llanos, D. E. Olivares, J. W. Simpson-Porco, M. Kazerani, and D. Saez, “A novel distributed control strategy for optimal dispatch of isolated microgrids considering congestion,” IEEE Trans. Smart Grid, vol.10, no. 6, pp. 6595–6606, Nov. 2019.
[11] A. Navas, J. S. Gómez, J. Llanos, E. Rute, D. Saez, and M. Sumner, “Distributed predictive control strategy for frequency restoration of microgrids considering optimal dispatch,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 2748–2759, Jul. 2021.
[12] M. J. Rana and M. A. Abido, “Energy management in DC microgrid with energy storage and model predictive controlled AC–DC converter,” IET Gener., Transmiss. Distrib., vol. 11, no. 15, pp. 3694–3702, Oct. 2017.
[13] C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IET Electr. Power Appl., vol. 151, no. 6, pp. 711–724, Nov. 2004.
[14] S. Y. Chen, H. Chiang, T. Liu, and C. Chang, “Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control,” IEEE/ASME Trans.Mechatronics, vol. 24, no. 2, pp. 741-752, Apr. 2019.
[15] Z. Zhang and Z. Yan, “An Adaptive Fuzzy Recurrent Neural Network for Solving the Nonrepetitive Motion Problem of Redundant Robot Manipulators,” IEEE Trans. Fuzzy Syst., vol. 28, no. 4, pp. 684-691, Apr. 2020.
[16] L. A. M. Riascos, F. G. Cozman, and P. E. Miyagi, ‘‘Detection and treatment of faults in automated machines based on Petri nets and Bayesian networks,’’ Proc. IEEE Int. Symp. Ind. Electron., Jun. 2003, pp. 729–734.
[17] T. Nishi and Y. Tanaka, ‘‘Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 42, no. 5, pp. 1230–1243, Sep. 2012.
[18] Y. Du, L. Qi and M. Zhou, "Analysis and Application of Logical Petri Nets to E-Commerce Systems,"IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 44, no. 4, pp. 468-481, Apr. 2014.
[19] K. H. Tan and T. Tseng, “Seamless Switching and Grid reconnection of Microgrid using Petri recurrent wavelet fuzzy neural network,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11847–11861, Oct. 2021.
[20] R. Davidrajuh, "Extracting Petri Modules from Large and Legacy Petri Net Models," IEEE Access, vol. 8, pp. 156539-156556, 2020.
[21] A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE Trans. Syst., Man, Cybern., vol. SMC-1, no. 4, pp. 364–378, Oct. 1971.
[22] S. Oh, W. Pedrycz, and B. Park, “Polynomial neural networks architecture: Analysis and design,” Comput.Electr. Eng., vol. 29, no. 6, pp. 703–725, Aug. 2003.
[23] W. Huang, S. Oh, and W. Pedrycz, “Fuzzy wavelet polynomial neural networks: Analysis and design,”IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1329–1341, Oct. 2017.
[24] Z. Wang, S. -K. Oh, E. -H. Kim, Z. Fu and W. Pedrycz, "Hierarchically Reorganized Multi-Layer Fuzzy Neural Networks Architecture Driven with the Aid of Node Selection Strategies and Structural Network Optimization," IEEE Access, vol. 10, pp. 7772-7792, 2022.
[25] R. A. Badwawi, W. R. Issa, T. K. Mallick, and M. Abusara, “Supervisory control for power management of an islanded AC microgrid using a frequency signalling-based fuzzy logic controller,” IEEE Trans. Sustainable Energy, vol. 10, no. 1, pp. 94-104, Jan. 2019.
[27] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[26] D. E. Olivares, A. M. Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. G. Bellmunt, M. Saeedifard, R. P. Behnke, G. A. J. Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[27] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[28] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[29] K. Yu, Q. Ai, S. Wang, J. Ni, and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, Mar. 2016.
[30] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 3, pp. 928–948, Sep. 2017.
[31] IEEE Standard 1547-2018, “IEEE Standard for interconnecting distributed resources with electric power systems,” IEEE Standard, New York, USA, pp. 1-16, 2018
[32] 談光雄:〈電網之運轉與智慧型控制〉。博士論文,電機電子工程學系,國防大學理工學院國防科學研究所,民國102年。
[33] 楊柏輝:〈應用單級轉換器之太陽能光電系統實虛功控制策略〉。碩士論文,電機工程學系,國立中央大學,民國105年。
[34] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, “An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
[35] 謝錦隆,薛康琳,鍾岳霖,戴志揚:〈臺灣風力發電與液流電池系統儲電情境模擬〉。臺灣能源期刊第三卷第一期第55-78頁,中華民國105年3月。
[36] X. Huang and B. Jiang, “Research on lithium battery energy storage system in wind power,” in Proc. International Conf. Electrical and Control Engineering, Yichang, pp. 1200-1203, 2011.
[37] 黃仲欽:〈交流電動機控制〉。交流電動機課程講義,民國97年。
[38] 石承民:〈結合虛擬慣量併網型微電網之智慧型控制〉。碩士論文,電機工程學系,國立中央大學,民國108年。
[39] C. Dufour and J. Bélanger, “On the use of real-time simulation technology in smart grid research and development,” in Proc. IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 2982-2989.
[40] A. Subburaj, A. R. Arra, and S. Bayne, “Stability analysis of A.C. and D.C. microgrids using OPAL-real time digital simulator,” in Proc. Ninth Annual IEEE Green Technologies Conf. (GreenTech), Denver, CO, pp. 39-45, 2017.
[41] O. Krishan and S. Suhag, “Power management control strategy for hybrid energy storage system in a grid-independent hybrid renewable energy system: a hardware-in-loop real-time verification,” IET Renewable Power Generation, vol. 14, no. 3, pp. 454-465, 24 2 2020.
[42] S. Sharma, V. Verma and R. K. Behera, “Real-time implementation of shunt active power filter with reduced sensors,” IEEE Trans. Industry Applications, vol. 56, no. 2, pp. 1850-1861, Mar.-Apr. 2020.
[43] C. A. Caldeira, A. D. D. de Almeida, H. R. Schlickmann, C. S. Gehrke, and F. Salvadori, “Impact analysis of the BESS insertion in electric grid using real-time simulation,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. - Latin America (ISGT Latin America), Gramado, Brazil, pp. 1-6, 2019.
[44] C. Dufour, S. Cense, and J. Belanger, “An FPGA HIL reconfigurable testing platform for vehicular traction systems,” in Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), Coimbra, pp. 1-4, 2014.
[45] S. Abourida, J. Belanger, and C. Dufour, “Real-time HIL simulation of a complete PMSM drive at 10 /spl mu/s time step,” in Proc. European Conf. Power Electronics and Applications, Dresden, pp. 9 pp.-P. 9, 2005.
[46] D. Bian, M. Kuzlu, M. Pipattanasomporn, S. Rahman, and Y. Wu, “Real-time co-simulation platform using OPAL-RT and OPNET for analyzing smart grid performance,” in Proc. IEEE Power & Energy Society General Meeting, Denver, CO, pp. 1-5, 2015.
[47] 劉邦威:〈應用即時模擬技術於交流微電網之建模與模擬〉。碩士論文,電機工程學系,國立中正大學,民國101年。
[48] Opal-RT Technologies Inc., RT LAB Version 11.3, User’s Guide.
[49] OP4510使用教學,思渤科技,2019。
[64] Opal-RT Technologies Inc., ARTEMIS Version 7.3, User’s Guide.
[50] Opal-RT Technologies Inc., eHS User’s Guide.
[51] C. Dufour, S. Cense, T. Ould-Bachir, L. Grégoire, and J. Bélanger, “General-purpose reconfigurable low-latency electric circuit and motor drive solver on FPGA,” in Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society, Montreal, QC, pp. 3073-3081, 2012.
[52] 柯廷翰:〈考慮配電系統三相故障之具低電壓穿越能力之智慧型太陽光電系統〉。碩士論文,電機工程學系,國立中央大學,民國102年。
[53] Opal-RT Technologies Inc., ARTEMIS Version 7.3, User’s Guide.
[54] IEC-61850使用教學,思渤科技,2023。
[55] L. Qi, W. Luan, X. S. Lu, and X. Guo, "Shared P-Type Logic Petri Net Composition and Property Analysis: A Vector Computational Method," IEEE Access, vol. 8, pp. 34644-34653, 2020.
[56] K. H. Tan, "Squirrel Cage Induction Generator System Using Wavelet Petri Fuzzy Neural Network Control for Wind Power Applications," IEEE Transactions on Power Electronics, vol. 31 pp. 1-1, 2015.
[57] W. Luan, L. Qi, Z. Zhao, J. Liu, and Y. Du, "Logic Petri Net Synthesis for Cooperative Systems," IEEE Access, vol. 7, pp. 161937-161948, 2019.
[58] E. A. Alzalab, A. M. El-Sherbeeny, M. A. El-Meligy, and H. T. Rauf, "Trust-Based Petri Net Model for Fault Detection and Treatment in Automated Manufacturing Systems," IEEE Access, vol. 9, pp. 157997-158009, 2021.
[59] X. Gao and X. Hu, "A Petri Net Neural Network Robust Control for New Paste Backfill Process Model," IEEE Access, vol. 8, pp. 18420-18425, 2020.
[60] R. J. Rodriguez, S. Bernardi, and A. Zimmermann, "An Evaluation Framework for Comparative Analysis of Generalized Stochastic Petri Net Simulation Techniques," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 8, pp. 2834-2844, 2020.
[61] 蕭果登:〈以OPAL-RT硬體迴圈實現微電網之智慧型控制〉。碩士論文,電機工程學系,國立中央大學,民國109年。 |