參考文獻 |
1. Y.-C. Chiu, T.-A. Pan, M.-C. Chen, J.-W. Zhang, H.-Y. Bor, S.-L. Lee, The Effects of Multi-Stage Homogenizations on the Microstructures and Mechanical Properties of Al–Zn–Mg–Zr–Sc Alloys, Applied Sciences, 11(2), 470 (2021)
2. L. Chen, G. Zhao, J. Yu, W. Zhang, Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process, Materials & Design (1980-2015), 66, 129-136 (2015)
3. Y.-C. Tzeng, C.-Y. Chung, H.-C. Chien, Effects of trace amounts of Zr and Sc on the recrystallization behavior and mechanical properties of Al-4.5Zn-1.6Mg alloys, Materials Letters, 228, 270-272 (2018)
4. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials & Design (1980-2015), 56, 862-871 (2014)
5. H.C. Fang, F.H. Luo, K.H. Chen, Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al-Zn-Mg-Cu-Zr-Yb-Cr alloy, Materials Science and Engineering: A, 684, 480-490 (2017)
6. L. Ye, X. Yao, H. Lin, S. Liu, Y. Deng, X. Zhang, Coarse grain layer on stress corrosion cracking resistance of Al–Zn–Mg Alloy, High Performance Structural Materials: Proceedings of Chinese Materials Conference 2017 18th, 2018, Springer, pp 337-347
7. Y. Prasad, H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, D. Barker, Modeling of dynamic material behavior in hot deformation: forging of Ti-6242, Metallurgical Transactions A, 15(10), 1883-1892 (1984)
8. Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, Z. Chai, Y. Liu, K. Song, Small Y Addition Effects on Hot Deformation Behavior of Copper‐Matrix Alloys, Advanced Engineering Materials, 19(12), 1700197 (2017)
9. A. Chamanfar, M.T. Alamoudi, N.E. Nanninga, W.Z. Misiolek, Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099), Materials Science and Engineering: A, 743, 684-696 (2019)
10. D. Wang, Q. Zhu, Z. Wei, B. Lin, Y. Jing, Y. Shi, R.D.K. Misra, J. Li, Hot deformation behaviors of AZ91 magnesium alloy: Constitutive equation, ANN-based prediction, processing map and microstructure evolution, Journal of Alloys and Compounds, 908, 164580 (2022)
11. S. Gourdet, F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Materials Science and Engineering: A, 283(1-2), 274-288 (2000)
12. S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression, Materials & Design, 107, 277-289 (2016)
13. B. Ke, L. Ye, J. Tang, Y. Zhang, S. Liu, H. Lin, Y. Dong, X. Liu, Hot deformation behavior and 3D processing maps of AA7020 aluminum alloy, Journal of Alloys and Compounds, 845, (2020)
14. C. Xu, H. He, Z. Xue, L. Li, A detailed investigation on the grain structure evolution of AA7005 aluminum alloy during hot deformation, Materials Characterization, 171, 110801 (2021)
15. J. Zhao, Y. Deng, J. Tan, J. Zhang, Effect of strain rate on the recrystallization mechanism during isothermal compression in 7050 aluminum alloy, Materials Science and Engineering: A, 734, 120-128 (2018)
16. W. Liu, H. Zhao, D. Li, Z. Zhang, G. Huang, Q. Liu, Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature, Materials Science and Engineering: A, 596, 176-182 (2014)
17. Y. Deng, Z. Yin, J. Huang, Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature, Materials Science and Engineering: A, 528(3), 1780-1786 (2011)
18. J. Yan, Q.-l. Pan, A.-d. Li, W.-b. Song, Flow behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models, Transactions of Nonferrous Metals Society of China, 27(3), 638-647 (2017)
19. B. Li, Q.-l. Pan, C. Li, Z.-y. Zhang, Z.-m. Yin, Hot compressive deformation behavior and constitutive relationship of Al-Zn-Mg-Zr alloy with trace amounts of Sc, Journal of Central South University, 20(11), 2939-2946 (2013)
20. B.J. Jang, H.S. Park, M.-S. Kim, High Temperature Deformation Behavior of Al–Zn–Mg-Based New Alloy Using a Dynamic Material Model, Metals and Materials International, 24(6), 1249-1255 (2018)
21. K. Deng, D. Sun, W. Tang, Z. Cai, R. Zheng, J. Zhou, 3D processing map and hot deformation behaviour of a new type Al–Zn–Mg alloy, Philosophical Magazine, 100(13), 1716-1732 (2020)
22. B. Li, Q. Pan, Z. Zhang, C. Li, Characterization of flow behavior and microstructural evolution of Al–Zn–Mg–Sc–Zr alloy using processing maps, Materials Science and Engineering: A, 556, 844-848 (2012)
23. N. Nayan, G. Singh, P.M. Souza, S.V.S.N. Murty, M. Venkatesh, B.R.N.V. Shivram, P.R. Narayanan, M. Mohan, S.K. Jha, Hot workability and microstructure control in Monel®400 (Ni–30Cu) alloy: An approach using processing map, constitutive equation and deformation modeling, Materials Science and Engineering: A, 825, 141855 (2021)
24. R. Duggirala, A. Badawy, Finite element method approach to forging process design, Journal of Materials Shaping Technology, 6(2), 81-89 (1988)
25. J. Liu, Z. Cui, C. Li, Analysis of metal workability by integration of FEM and 3-D processing maps, Journal of Materials Processing Technology, 205(1), 497-505 (2008)
26. A. Łukaszek-Solek, A. Światoniowski, K. Celadyn, Analysis of Hot Workability of Nickel-Chromium alloy, METALed., Czech, 371-376(2015)
27. Y. Sun, X. Feng, L. Hu, H. Zhang, H. Zhang, Characterization on hot deformation behavior of Ti-22Al-25Nb alloy using a combination of 3D processing maps and finite element simulation method, Journal of Alloys and Compounds, 753, 256-271 (2018)
28. A. Łukaszek-Sołek, J. Krawczyk, T. Śleboda, J. Grelowski, Optimization of the hot forging parameters for 4340 steel by processing maps, Journal of Materials Research and Technology, 8(3), 3281-3290 (2019)
29. X. Chen, Y. Du, T. Lian, K. Du, T. Huang, Hot Workability of Ultra-Supercritical Rotor Steel Using a 3-D Processing Map Based on the Dynamic Material Model, Materials (Basel), 13(18), 20 (2020)
30. 牛济泰, 材料和熱加工領域的物理模擬技術, 国防工业出版社, (1999)
31. P. Agarwal, A. Shabaik, High temperature deformation of Hastelloy Alloy C-276, Superalloys: Metallurgy and Manufacturing Processes International Symposium, Seven Springs, Pennsylvania, 237-244(1976)
32. H. Wu, W. Xu, S. Wang, Z. Yang, Y. Chen, B. Teng, D. Shan, B. Guo, A cellular automaton coupled FEA model for hot deformation behavior of AZ61 magnesium alloys, Journal of Alloys and Compounds, 816, (2020)
33. W. Liu, "Research on Mechanical Property and Microstructure Evolution in Hot Working of 7085 Aluminum Alloy,"重慶大學博士學位論文, (2014)
34. W. Blum, H. McQueen, Dynamics of recovery and recrystallization, Materials science forum, Trans Tech Publ, 31-42, (1996)
35. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, (2012)
36. R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi, Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion, Materials Science and Engineering: A, 396(1-2), 341-351 (2005)
37. M. Kassner, S. Barrabes, New developments in geometric dynamic recrystallization, Materials Science and Engineering: A, 410, 152-155 (2005)
38. R. Doherty, D. Hughes, F. Humphreys, J.J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, A. Rollett, Current issues in recrystallization: a review, Materials Science and Engineering: A, 238(2), 219-274 (1997)
39. P.K. Sagar, D. Banerjee, Y.V.R.K. Prasad, Unstable flow during hot deformation of Ti-24AI-20Nb alloy, Materials Science and Technology, 13(9), 755-760 (1997)
40. O. Lypchanskyi, T. Śleboda, M. Wojtaszek, K. Muszka, A. Łukaszek-Sołek, R. Stanik, M. Gude, The analysis of flow behavior of Ti-6Al-2Sn-4Zr-6Mo alloy based on the processing maps, International Journal of Material Forming, 14(4), 523-532 (2021)
41. Y. Xu, L. Hu, Y. Sun, Processing map and kinetic analysis for hot deformation of an as-cast AZ91D magnesium alloy, Materials Science and Engineering: A, 578, 402-407 (2013)
42. Y. Xu, L. Hu, T. Deng, L. Ye, Hot deformation behavior and processing map of as-cast AZ61 magnesium alloy, Materials Science and Engineering: A, 559, 528-533 (2013)
43. C. Dharmendra, K.P. Rao, F. Zhao, Y.V.R.K. Prasad, N. Hort, K.U. Kainer, Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32–0.4Al magnesium alloy, Materials Science and Engineering: A, 606, 11-23 (2014)
44. O. Lypchanskyi, T. Śleboda, K. Zyguła, A. Łukaszek-Sołek, M. Wojtaszek, Evaluation of hot workability of nickel-based superalloy using activation energy map and processing maps, Materials, 13(16), 3629 (2020)
45. Y. Sun, Z. Cao, Z. Wan, L. Hu, W. Ye, N. Li, C. Fan, 3D processing map and hot deformation behavior of 6A02 aluminum alloy, Journal of Alloys and Compounds, 742, 356-368 (2018)
46. Y. Qunying, L. Wenyi, Z. Zhiqing, H. Guangjie, L. Xiaoyong, Hot Deformation Behavior and Processing Maps of AA7085 Aluminum Alloy, Rare Metal Materials and Engineering, 47(2), 409-415 (2018)
47. R. Wu, Y. Liu, C. Geng, Q. Lin, Y. Xiao, J. Xu, W. Kang, Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map, Journal of Alloys and Compounds, 713, 212-221 (2017)
48. P.L. Wang, H.T. Jiang, R.J. Zhang, S.Y. Huang, Study of hot deformation behavior of 6082 aluminum alloy, Materials Science Forum, Trans Tech Publ, 340-346, (2017)
49. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, J.F. Fan, Hot deformation behavior and workability characteristics of bimodal size SiCp/AZ91 magnesium matrix composite with processing map, Materials & Design, 64, 177-184 (2014)
50. M. Subramani, Y.-C. Tzeng, L.-W. Tseng, Y.-K. Tsai, G.-S. Chen, C.-Y. Chung, S.-J. Huang, Hot deformation behavior and processing map of AZ61/SiC composites, Materials Today Communications, 29, (2021)
51. G. Ganesan, K. Raghukandan, R. Karthikeyan, B.C. Pai, Development of processing maps for 6061 Al/15% SiCp composite material, Materials Science and Engineering: A, 369(1), 230-235 (2004)
52. Y. Prasad, T. Seshacharyulu, Modelling of hot deformation for microstructural control, International Materials Reviews, 43(6), 243-258 (1998)
53. C. JK, P. YVRK, A. MK, Processing map for hot working of alpha-zirconium, Metallurgical Transactions A, 22A, 829-836 (1991)
54. J. Sarkar, Y. Prasad, M. Surappa, Optimization of hot workability of an Al-Mg-Si alloy using processing maps, Journal of materials science, 30(11), 2843-2848 (1995)
55. G. Yang, W. Xu, X. Jin, Z. Wang, D. Shan, B. Guo, Hot deformation behavior and microstructure evolution of the spray deposited and secondary hot extruded 2195 Al–Li alloy, Journal of Materials Research and Technology, 20, 2784-2798 (2022)
56. Z. Jia, H. Wang, P. Zhang, J. Ji, T. Wang, Y. Wang, Dynamic Recrystallization Mechanisms of As‐Extruded GH4151 Alloy during Hot Deformation, Advanced Engineering Materials, 25(21), 2300795 (2023)
57. B. Roebuck, J. Lord, M. Brooks, M. Loveday, C. Sellars, R. Evans, Measurement of flow stress in hot axisymmetric compression tests, Materials at High Temperatures, 23(2), 59-83 (2006)
58. Gleeble 3500-GTC, https://www.gleeble.com/products/gleeble-systems/gleeble-3500.html (2024)
59. G. Krallics, Z. Bézi, P. Bereczki, Hot deformation properties of 8006 aluminium alloy, Procedia Manufacturing, 37, 174-181 (2019)
60. K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Materials & Design, 111, 548-574 (2016)
61. T. Song, S. Xu, Y. Li, H. Ding, Hot deformation and dynamic recrystallization behavior of a Cu-9Ni-6Sn-0.04Cr alloy, Materials Today Communications, 35, 105828 (2023)
62. H.J. McQueen, Development of dynamic recrystallization theory, Materials Science and Engineering: A, 387-389, 203-208 (2004)
63. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, B.Y. Zhang, Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation, Materials Science and Engineering: A, 488(1-2), 64-71 (2008)
64. Y. Yu, Q. Pan, W. Wang, Z. Huang, S. Xiang, B. Liu, Dynamic softening mechanisms and Zener-Hollomon parameter of Al–Mg–Si–Ce–B alloy during hot deformation, Journal of Materials Research and Technology, 15, 6395-6403 (2021)
65. L. Li, Y. Wang, H. Li, W. Jiang, T. Wang, C.-C. Zhang, F. Wang, H. Garmestani, Effect of the Zener-Hollomon parameter on the dynamic recrystallization kinetics of Mg–Zn–Zr–Yb magnesium alloy, Computational Materials Science, 166, 221-229 (2019)
66. M. Jafari, A. Najafizadeh, Correlation between Zener–Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel, Materials Science and Engineering: A, 501(1), 16-25 (2009)
67. C. Li, S. Wang, D. Zhang, S. Liu, Z. Shan, X. Zhang, Effect of Zener-Hollomon parameter on quench sensitivity of 7085 aluminum alloy, Journal of Alloys and Compounds, 688, 456-462 (2016)
68. S.F. Medina, C.A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta materialia, 44(1), 137-148 (1996)
69. X.Y. Liu, Q.L. Pan, Y.B. He, W.B. Li, W.J. Liang, Z.M. Yin, Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation, Materials Science and Engineering: A, 500(1-2), 150-154 (2009)
70. A.A. Khamei, K. Dehghani, R. Mahmudi, Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation, Jom, 67(5), 966-972 (2015)
71. C.M. Sellars, W.J. McTegart, On the mechanism of hot deformation, Acta Metallurgica, 14(9), 1136-1138 (1966)
72. P.-w. Li, H.-z. Li, L. Huang, X.-p. Liang, Z.-x. Zhu, Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map, Transactions of Nonferrous Metals Society of China, 27(8), 1677-1688 (2017)
73. J. Ren, R. Wang, Y. Feng, C. Peng, Z. Cai, Hot deformation behavior and microstructural evolution of as-quenched 7055 Al alloy fabricated by powder hot extrusion, Materials Characterization, 156, (2019)
74. Z. Zheng, Y. Chen, F. Kong, X. Wang, Y. Yu, Hot Deformation Behavior and Hot Rolling Properties of a Nano-Y2O3 Addition Near-α Titanium Alloy, Metals, 11(5), 837 (2021)
75. Y. Lin, M.-S. Chen, J. Zhong, Prediction of 42CrMo steel flow stress at high temperature and strain rate, Mechanics Research Communications, 35(3), 142-150 (2008) |