博碩士論文 108383009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.17.110.119
姓名 林俊男(Chun-Nan Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 擠製態Al-4.8Zn-1.8Mg合金熱變形行為及加工圖研究
(Study of hot deformation behavior and processing maps for as-extruded Al-4.8Zn-1.8Mg alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鋁合金熱壓縮行為研究的文章多使用均質態的鑄坯,其晶粒為等軸晶;然而針對商業鋁合金鍛造所使用的坯件狀態多為擠製態,其晶粒為已具備應變能之細長條狀;上述兩種坯件在熱壓縮過程的變形行為勢必有所差異。為了提供鍛造製程工程師和模具設計師更接近實際鍛造行為的微結構變化,本論文以擠製態7005鋁合金(Al-4.8Zn-1.8Mg)為研究對象,進行等溫熱壓縮試驗(溫度300-550oC,應變速率0.001-1s-1,應變量1.2)。
比較試件在壓縮前後不同條件之巨觀結構與微觀結構演化,壓縮前的試片晶粒組織呈現細長條狀,細部放大可看到部分具等軸晶外型的再結晶晶粒。除了壓縮溫度550oC以外,其餘條件壓縮後的試片從巨觀結構可看到試件內部依受力狀況以及變形狀況不同可區分為三個區域,分別為難變形區(應變量最小)、容易變形區(應變量最大)、自由變形區(應變量居中)。而從EBSD微觀結構看出提高變形溫度以及降低應變速率較容易驅動動態回復以及動態再結晶使流變應力降低。根據晶粒方向差角判斷可發現,擠製態7005鋁合金之動態再結晶粒依形成過程之差異可分為連續動態再結晶、不連續動態再結晶以及幾何動態再結晶;後兩者形成位置為沿著原始晶界。
本研究根據動態材料模型(DMM),求出功率耗散效率(η)與失穩值(ξ),建構包含真應變量在內的三維度(3D)擠製態7005合金熱加工圖(processing maps);並搭配微觀結構選出最佳製程區間。結果顯示,η值隨溫度或應變量的增加而增加,但隨應變速率的增加而遞減。失穩區的範圍隨溫度的降低或應變速率的增加而擴展。η<0.20通常位於失穩區,可發現Micro crack及Flow localization等微觀缺陷;而穩定區的微觀組織為晶粒細小之再結晶晶粒,η值皆在0.30以上。最佳製程區間為加工溫度425–500度C,應變速率0.1~0.01s-1。最後,本研究將η值與ξ值結合數值模擬並率先應用在車輪轂閉模鍛造參數最佳化分析,使商業鍛造模擬軟體具有預測微觀結構演變的功能,簡化模具設計與決定製程參數時的試驗流程。
摘要(英) The billets commonly utilized in the commercial forging of aluminum alloys are typically in an extruded state, characterized by elongated grains containing pre-existing strain energy. However, numerous studies examining the hot compression behavior of aluminum alloys often employ homogeneous cast ingots with equiaxed grains. It is anticipated that the deformation behaviors of these two types of billets during the hot compression process will differ. In order to offer process engineers and mold designers with microstructural changes that closely reflect actual deformation behaviors, this study concentrates on the extruded state of 7005 alloys (Al-4.8Zn-1.8Mg), conducting isothermal compression tests within a temperature range of 300-550°C, strain rates of 0.001-1s-1, and a strain of 1.2.
In comparing the evolution of macrostructure and microstructure of specimens under various conditions before and after compression, it was observed that pre-compressed samples displayed elongated grains, with some recrystallized grains exhibiting an equiaxed shape upon closer examination. Post-compression specimens under conditions other than a compression temperature of 550°C exhibited three distinct regions in the macrostructure characterized by internal stress and deformation: a hard-to-deform zone with minimal strain, an easily deformable zone with maximal strain, and a free deformation zone with mid-range strain. Microstructure analysis using Electron Backscatter Diffraction (EBSD) indicated that higher deformation temperatures and lower strain rates promoted dynamic recovery and dynamic recrystallization, leading to a reduction in flow stress. Examination of grain misorientation revealed that dynamically recrystallized grains in as-extruded 7005 alloys could be classified into continuous dynamic recrystallization, discontinuous dynamic recrystallization, and geometric dynamic recrystallization, with the latter two processes occurring along the original grain boundaries.
In this investigation, the Dynamic Material Model (DMM) is being employed to analyze the power dissipation efficiency (η) and instability value (ξ) using data derived from hot compression tests in order to construct a three-dimensional (3D) processing map for as-extruded 7005 alloys, incorporating true strain. Microstructure analysis was utilized to determine the optimal processing range. Findings reveal that η rises with temperature or strain yet declines with increasing strain rate. The region of instability expands with decreasing temperature or increasing strain rate. η values below 0.20 are typically in the instability region, linked to micro-defects like microcracks and flow localization. Conversely, in stable regions characterized by refined recrystallized grains, η values consistently exceed 0.30. The ideal processing range is temperatures from 425-500oC and strain rates between 0.1 and 0.01 s-1. This study is pioneering in optimizing closed die forging processing parameters by integrating power dissipation efficiency (η) and instability value (ξ) with numerical simulations. It introduces a predictive model for microstructure evolution through commercial simulation software, intending to enhance efficiency in trial processes for mold designers and forging engineers.
關鍵字(中) ★ 擠製態7005合金
★ 熱變形行為
★ 三維度加工圖
★ 有限元素數值模擬
★ 動態回復
★ 動態再結晶
關鍵字(英) ★ As-extruded 7005 alloys
★ Hot deformation behavior
★ 3D processing maps
★ FEM numerical simulation
★ Dynamic recovery
★ Dynamic recrystallization
論文目次 Table of contents
中文摘要.................................................i
ABSTRACT..............................................iii
Table of contents.......................................v
List of Figures......................................viii
List of Tables..........................................x
Explanation of Symbols.................................xi
1 Introduction....................................1
1.1 Background..........................................1
1.2 Literature survey...................................2
1.2.1 Hot deformation behavior and microstructure evolution on aluminum alloy.......................................2
1.2.2 Processing maps of Al-Zn-Mg series aluminum alloys ........................................................6
1.2.3 Integration of Processing Maps with FEM Numerical Simulation..............................................8
1.3 Simulation tests for hot forging processes.........10
1.3.1 Fundamental concepts of physical simulation......10
1.3.2 Materials and hot processing physical simulation testing machine........................................11
1.3.3 Isothermal hot compression test..................12
1.4 Hot compression processing deformation and softening mechanisms.............................................13
1.4.1 Dynamic recovery:................................14
1.4.2 Types and formation mechanisms of dynamic recrystallization......................................16
1.5 Analysis method of hot workability.................19
1.6 Research motivation, purpose, and content..........23
2 Experimental procedure.........................27
2.1 Preparation of isothermal compression test specimens...............................................27
2.1.1 Preparation of 7005 cast ingots...................27
2.1.2 Preparation of as-extruded 7005 alloys specimens..28
2.2 As-extruded 7005 alloys isothermal compression test.29
2.2.1 Introduction of Gleeble 3500 thermomechanical simulator...............................................29
2.2.2 As-extruded 7005 alloys isothermal compression test procedures..............................................30
2.3 Test piece preparation and observation equipment....33
2.3.1 OM inspection.....................................33
2.3.2 Electron Back-Scattered Diffraction (EBSD) Analysis................................................34
2.4 Parameter configuration for numerical simulation software................................................35
3 Microstructure evolution........................37
3.1 Comparison of homogenized and extruded microstructures.........................................37
3.2 As-extruded bar microstructure......................38
3.3 Macroscopic view of deformed specimens..............39
3.4 Microstructure of compressed specimens..............41
3.5 Influence of processing temperature on the microstructure of as-extruded 7005 alloys...............43
3.6 Influence of strain rate on the microstructure of as-extruded 7005 alloys....................................49
3.7 Analysis of dynamic recrystallization mechanisms....55
3.8 Correlation between the Z-parameter and the microstructure of as-extruded 7005 alloys...............58
3.9 Z-parameter simulation analysis by finite element method (FEM)...................................................62
4 As-extruded 7005 alloy processing maps..........65
4.1 Establishing hot processing map.....................65
4.2 Three-dimensional power dissipation maps analysis...69
4.3 Three-dimensional instability maps analysis.........73
4.4 Hot processing map analysis.........................74
4.5 Microstructural analysis with hot processing maps...76
4.6 Optimal processing window...........................79
4.7 Integration of processing map analysis results into FEM numerical simulation....................................83
5. Conclusions..........................................89
Reference...............................................91
Appendix 1 True stress-strain curves of the hot as-extruded 7005 alloy.............................................97
Appendix 2 博士候選人發表之期刊論文.......................98


List of Figures
Figure 1.1 True stress-true strain diagram. 14
Figure 1.2 Schematic of dynamic recovery. 15
Figure 1.3 Schematic of the continuous dynamic recrystallization. 18
Figure 1.4 Schematic of the geometric dynamic recrystallization. 19
Figure 1.5 X12CrMoWVNbN10-1-1 alloy power dissipation maps with different strains: (a)ε=0.2; (b)ε=0. 3; (c)ε=0. 4; (d)ε=0.5. 21
Figure 1.6AA7020 aluminum alloy 3D instability maps 22
Figure 1.7 Processing maps for the extruded 2195 Al-Li alloy are presented under strains of (a) 0.3, (b) 0.5, (c) 0.7, and (d) 0.9 23
Figure 2.1 Preparation process of cylindrical specimen. 28
Figure 2.2 Cross-section of 7005 alloy specimen in extruded state. 29
Figure 2.3 Schematic of the compression tests 31
Figure 2.4 FEM numerical simulation of the hot compression test. 36
Figure 2.5 FEM numerical simulation of automobile wheel hub forging forming process. 36
Figure 3.1(a) Homogeneous 7005 alloys OM image; 2(b) OM image. 38
Figure 3.2 LOM images: (a) Panoramic view, (b)Low-magnification view (c) Further magnification of the red box in Figure 4(b) 39
Figure 3.3 (a) Simulation of strain distribution, (b) schematic of the non-uniformity of the compressed sample. 40
Figure 3.4 Panorama views of hot compressed s at a strain rate 0.001 s – 1. 42
Figure 3.5 OM images of Region II (central region) 43
Figure 3.6 EBSD maps at a strain rate of 1 s⁻¹. 47
Figure 3.7 Recrystallization proportions at a strain rate of 1 s⁻¹. 48
Figure 3.8 Correlation between migration rate and temperature during deformation. 49
Figure 3.9 EBSD maps at various deformation rates and temperatures. 52
Figure 3.10 Recrystallization proportions at various deformation rates and temperatures. 53
Figure 3.11 Misorientation angle distribution histograms at various temperatures and strain rates 54
Figure 3.12 Simplified schematics for the three DRX process 57
Figure 3.13 DRX mechanism analysis by EBSD. 57
Figure 3.14 Relationships between (a) lnέ and σ; (b) lnέ and lnσ; (c) lnέ and ln[sinh(ασ)]; (d) ln[sinh (ασ)] and 1000/T. 59
Figure 3.15 Contours of lnZ. 61
Figure 3.16 Microstructures at different lnZ values. 61
Figure 3.17 Correlation between the Z-parameter and the microstructure by different parameters. 62
Figure 3.18 (a) numerical simulation of lnZ; (b) panoramic view. 63
Figure 4.1 Schematic of G content and J co-content 67
Figure 4.2 Cubic spline interpolation function fitting lnσ-lnε relationship curve: (a)ε=0.3;(b) ε=0.6; (c) ε=0.9; (d) ε=1.2 70
Figure 4.3 3D power dissipation maps (a) Sliced by temperature; (b) Sliced by ln (strain rate); and (c) Sliced by strain. 72
Figure 4.4 Power dissipation trend charts of as-extruded AA7005 alloys (a) by temperature effect; (b) by strain rate effect; and (c) by true strain effect. 73
Figure 4.5 3D instability map (a) Sliced by temperature; (b) Sliced by ln (strain rate) and (c) Sliced by strain. 74
Figure 4.6 Processing maps of different strains. 76
Figure 4.7 Microstructure of as-extruded 7005 alloys under different conditions with a strain of 1.2. 79
Figure 4.8 Microstructural evolution characteristics of as-extruded 7005 alloys under different process parameters 80
Figure 4.9 EBSD images under different conditions. 82
Figure 4.10 Grain size distribution and grain size average. 83
Figure 4.11 FEM simulation and OM observation result. 84
Figure 4.12 Simulation results of the dissipation efficiency distribution. 86
Figure 4.13 Histogram of simulation results of dissipation efficiency distribution. 86
Figure 4.14 Simulation results of instability values. 87

List of Tables
Table 1.1 Optimal process conditions for Al-Zn-Mg aluminum alloys 8
Table 2.1 Chemical compositions of the as cast 7005 alloys. (wt.%) 27
Table 2.2 Compression test condition 32
參考文獻 1. Y.-C. Chiu, T.-A. Pan, M.-C. Chen, J.-W. Zhang, H.-Y. Bor, S.-L. Lee, The Effects of Multi-Stage Homogenizations on the Microstructures and Mechanical Properties of Al–Zn–Mg–Zr–Sc Alloys, Applied Sciences, 11(2), 470 (2021)
2. L. Chen, G. Zhao, J. Yu, W. Zhang, Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process, Materials & Design (1980-2015), 66, 129-136 (2015)
3. Y.-C. Tzeng, C.-Y. Chung, H.-C. Chien, Effects of trace amounts of Zr and Sc on the recrystallization behavior and mechanical properties of Al-4.5Zn-1.6Mg alloys, Materials Letters, 228, 270-272 (2018)
4. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials & Design (1980-2015), 56, 862-871 (2014)
5. H.C. Fang, F.H. Luo, K.H. Chen, Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al-Zn-Mg-Cu-Zr-Yb-Cr alloy, Materials Science and Engineering: A, 684, 480-490 (2017)
6. L. Ye, X. Yao, H. Lin, S. Liu, Y. Deng, X. Zhang, Coarse grain layer on stress corrosion cracking resistance of Al–Zn–Mg Alloy, High Performance Structural Materials: Proceedings of Chinese Materials Conference 2017 18th, 2018, Springer, pp 337-347
7. Y. Prasad, H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, D. Barker, Modeling of dynamic material behavior in hot deformation: forging of Ti-6242, Metallurgical Transactions A, 15(10), 1883-1892 (1984)
8. Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, Z. Chai, Y. Liu, K. Song, Small Y Addition Effects on Hot Deformation Behavior of Copper‐Matrix Alloys, Advanced Engineering Materials, 19(12), 1700197 (2017)
9. A. Chamanfar, M.T. Alamoudi, N.E. Nanninga, W.Z. Misiolek, Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099), Materials Science and Engineering: A, 743, 684-696 (2019)
10. D. Wang, Q. Zhu, Z. Wei, B. Lin, Y. Jing, Y. Shi, R.D.K. Misra, J. Li, Hot deformation behaviors of AZ91 magnesium alloy: Constitutive equation, ANN-based prediction, processing map and microstructure evolution, Journal of Alloys and Compounds, 908, 164580 (2022)
11. S. Gourdet, F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Materials Science and Engineering: A, 283(1-2), 274-288 (2000)
12. S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression, Materials & Design, 107, 277-289 (2016)
13. B. Ke, L. Ye, J. Tang, Y. Zhang, S. Liu, H. Lin, Y. Dong, X. Liu, Hot deformation behavior and 3D processing maps of AA7020 aluminum alloy, Journal of Alloys and Compounds, 845, (2020)
14. C. Xu, H. He, Z. Xue, L. Li, A detailed investigation on the grain structure evolution of AA7005 aluminum alloy during hot deformation, Materials Characterization, 171, 110801 (2021)
15. J. Zhao, Y. Deng, J. Tan, J. Zhang, Effect of strain rate on the recrystallization mechanism during isothermal compression in 7050 aluminum alloy, Materials Science and Engineering: A, 734, 120-128 (2018)
16. W. Liu, H. Zhao, D. Li, Z. Zhang, G. Huang, Q. Liu, Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature, Materials Science and Engineering: A, 596, 176-182 (2014)
17. Y. Deng, Z. Yin, J. Huang, Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature, Materials Science and Engineering: A, 528(3), 1780-1786 (2011)
18. J. Yan, Q.-l. Pan, A.-d. Li, W.-b. Song, Flow behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models, Transactions of Nonferrous Metals Society of China, 27(3), 638-647 (2017)
19. B. Li, Q.-l. Pan, C. Li, Z.-y. Zhang, Z.-m. Yin, Hot compressive deformation behavior and constitutive relationship of Al-Zn-Mg-Zr alloy with trace amounts of Sc, Journal of Central South University, 20(11), 2939-2946 (2013)
20. B.J. Jang, H.S. Park, M.-S. Kim, High Temperature Deformation Behavior of Al–Zn–Mg-Based New Alloy Using a Dynamic Material Model, Metals and Materials International, 24(6), 1249-1255 (2018)
21. K. Deng, D. Sun, W. Tang, Z. Cai, R. Zheng, J. Zhou, 3D processing map and hot deformation behaviour of a new type Al–Zn–Mg alloy, Philosophical Magazine, 100(13), 1716-1732 (2020)
22. B. Li, Q. Pan, Z. Zhang, C. Li, Characterization of flow behavior and microstructural evolution of Al–Zn–Mg–Sc–Zr alloy using processing maps, Materials Science and Engineering: A, 556, 844-848 (2012)
23. N. Nayan, G. Singh, P.M. Souza, S.V.S.N. Murty, M. Venkatesh, B.R.N.V. Shivram, P.R. Narayanan, M. Mohan, S.K. Jha, Hot workability and microstructure control in Monel®400 (Ni–30Cu) alloy: An approach using processing map, constitutive equation and deformation modeling, Materials Science and Engineering: A, 825, 141855 (2021)
24. R. Duggirala, A. Badawy, Finite element method approach to forging process design, Journal of Materials Shaping Technology, 6(2), 81-89 (1988)
25. J. Liu, Z. Cui, C. Li, Analysis of metal workability by integration of FEM and 3-D processing maps, Journal of Materials Processing Technology, 205(1), 497-505 (2008)
26. A. Łukaszek-Solek, A. Światoniowski, K. Celadyn, Analysis of Hot Workability of Nickel-Chromium alloy, METALed., Czech, 371-376(2015)
27. Y. Sun, X. Feng, L. Hu, H. Zhang, H. Zhang, Characterization on hot deformation behavior of Ti-22Al-25Nb alloy using a combination of 3D processing maps and finite element simulation method, Journal of Alloys and Compounds, 753, 256-271 (2018)
28. A. Łukaszek-Sołek, J. Krawczyk, T. Śleboda, J. Grelowski, Optimization of the hot forging parameters for 4340 steel by processing maps, Journal of Materials Research and Technology, 8(3), 3281-3290 (2019)
29. X. Chen, Y. Du, T. Lian, K. Du, T. Huang, Hot Workability of Ultra-Supercritical Rotor Steel Using a 3-D Processing Map Based on the Dynamic Material Model, Materials (Basel), 13(18), 20 (2020)
30. 牛济泰, 材料和熱加工領域的物理模擬技術, 国防工业出版社, (1999)
31. P. Agarwal, A. Shabaik, High temperature deformation of Hastelloy Alloy C-276, Superalloys: Metallurgy and Manufacturing Processes International Symposium, Seven Springs, Pennsylvania, 237-244(1976)
32. H. Wu, W. Xu, S. Wang, Z. Yang, Y. Chen, B. Teng, D. Shan, B. Guo, A cellular automaton coupled FEA model for hot deformation behavior of AZ61 magnesium alloys, Journal of Alloys and Compounds, 816, (2020)
33. W. Liu, "Research on Mechanical Property and Microstructure Evolution in Hot Working of 7085 Aluminum Alloy,"重慶大學博士學位論文, (2014)
34. W. Blum, H. McQueen, Dynamics of recovery and recrystallization, Materials science forum, Trans Tech Publ, 31-42, (1996)
35. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, (2012)
36. R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi, Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion, Materials Science and Engineering: A, 396(1-2), 341-351 (2005)
37. M. Kassner, S. Barrabes, New developments in geometric dynamic recrystallization, Materials Science and Engineering: A, 410, 152-155 (2005)
38. R. Doherty, D. Hughes, F. Humphreys, J.J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, A. Rollett, Current issues in recrystallization: a review, Materials Science and Engineering: A, 238(2), 219-274 (1997)
39. P.K. Sagar, D. Banerjee, Y.V.R.K. Prasad, Unstable flow during hot deformation of Ti-24AI-20Nb alloy, Materials Science and Technology, 13(9), 755-760 (1997)
40. O. Lypchanskyi, T. Śleboda, M. Wojtaszek, K. Muszka, A. Łukaszek-Sołek, R. Stanik, M. Gude, The analysis of flow behavior of Ti-6Al-2Sn-4Zr-6Mo alloy based on the processing maps, International Journal of Material Forming, 14(4), 523-532 (2021)
41. Y. Xu, L. Hu, Y. Sun, Processing map and kinetic analysis for hot deformation of an as-cast AZ91D magnesium alloy, Materials Science and Engineering: A, 578, 402-407 (2013)
42. Y. Xu, L. Hu, T. Deng, L. Ye, Hot deformation behavior and processing map of as-cast AZ61 magnesium alloy, Materials Science and Engineering: A, 559, 528-533 (2013)
43. C. Dharmendra, K.P. Rao, F. Zhao, Y.V.R.K. Prasad, N. Hort, K.U. Kainer, Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32–0.4Al magnesium alloy, Materials Science and Engineering: A, 606, 11-23 (2014)
44. O. Lypchanskyi, T. Śleboda, K. Zyguła, A. Łukaszek-Sołek, M. Wojtaszek, Evaluation of hot workability of nickel-based superalloy using activation energy map and processing maps, Materials, 13(16), 3629 (2020)
45. Y. Sun, Z. Cao, Z. Wan, L. Hu, W. Ye, N. Li, C. Fan, 3D processing map and hot deformation behavior of 6A02 aluminum alloy, Journal of Alloys and Compounds, 742, 356-368 (2018)
46. Y. Qunying, L. Wenyi, Z. Zhiqing, H. Guangjie, L. Xiaoyong, Hot Deformation Behavior and Processing Maps of AA7085 Aluminum Alloy, Rare Metal Materials and Engineering, 47(2), 409-415 (2018)
47. R. Wu, Y. Liu, C. Geng, Q. Lin, Y. Xiao, J. Xu, W. Kang, Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map, Journal of Alloys and Compounds, 713, 212-221 (2017)
48. P.L. Wang, H.T. Jiang, R.J. Zhang, S.Y. Huang, Study of hot deformation behavior of 6082 aluminum alloy, Materials Science Forum, Trans Tech Publ, 340-346, (2017)
49. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, J.F. Fan, Hot deformation behavior and workability characteristics of bimodal size SiCp/AZ91 magnesium matrix composite with processing map, Materials & Design, 64, 177-184 (2014)
50. M. Subramani, Y.-C. Tzeng, L.-W. Tseng, Y.-K. Tsai, G.-S. Chen, C.-Y. Chung, S.-J. Huang, Hot deformation behavior and processing map of AZ61/SiC composites, Materials Today Communications, 29, (2021)
51. G. Ganesan, K. Raghukandan, R. Karthikeyan, B.C. Pai, Development of processing maps for 6061 Al/15% SiCp composite material, Materials Science and Engineering: A, 369(1), 230-235 (2004)
52. Y. Prasad, T. Seshacharyulu, Modelling of hot deformation for microstructural control, International Materials Reviews, 43(6), 243-258 (1998)
53. C. JK, P. YVRK, A. MK, Processing map for hot working of alpha-zirconium, Metallurgical Transactions A, 22A, 829-836 (1991)
54. J. Sarkar, Y. Prasad, M. Surappa, Optimization of hot workability of an Al-Mg-Si alloy using processing maps, Journal of materials science, 30(11), 2843-2848 (1995)
55. G. Yang, W. Xu, X. Jin, Z. Wang, D. Shan, B. Guo, Hot deformation behavior and microstructure evolution of the spray deposited and secondary hot extruded 2195 Al–Li alloy, Journal of Materials Research and Technology, 20, 2784-2798 (2022)
56. Z. Jia, H. Wang, P. Zhang, J. Ji, T. Wang, Y. Wang, Dynamic Recrystallization Mechanisms of As‐Extruded GH4151 Alloy during Hot Deformation, Advanced Engineering Materials, 25(21), 2300795 (2023)
57. B. Roebuck, J. Lord, M. Brooks, M. Loveday, C. Sellars, R. Evans, Measurement of flow stress in hot axisymmetric compression tests, Materials at High Temperatures, 23(2), 59-83 (2006)
58. Gleeble 3500-GTC, https://www.gleeble.com/products/gleeble-systems/gleeble-3500.html (2024)
59. G. Krallics, Z. Bézi, P. Bereczki, Hot deformation properties of 8006 aluminium alloy, Procedia Manufacturing, 37, 174-181 (2019)
60. K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Materials & Design, 111, 548-574 (2016)
61. T. Song, S. Xu, Y. Li, H. Ding, Hot deformation and dynamic recrystallization behavior of a Cu-9Ni-6Sn-0.04Cr alloy, Materials Today Communications, 35, 105828 (2023)
62. H.J. McQueen, Development of dynamic recrystallization theory, Materials Science and Engineering: A, 387-389, 203-208 (2004)
63. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, B.Y. Zhang, Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation, Materials Science and Engineering: A, 488(1-2), 64-71 (2008)
64. Y. Yu, Q. Pan, W. Wang, Z. Huang, S. Xiang, B. Liu, Dynamic softening mechanisms and Zener-Hollomon parameter of Al–Mg–Si–Ce–B alloy during hot deformation, Journal of Materials Research and Technology, 15, 6395-6403 (2021)
65. L. Li, Y. Wang, H. Li, W. Jiang, T. Wang, C.-C. Zhang, F. Wang, H. Garmestani, Effect of the Zener-Hollomon parameter on the dynamic recrystallization kinetics of Mg–Zn–Zr–Yb magnesium alloy, Computational Materials Science, 166, 221-229 (2019)
66. M. Jafari, A. Najafizadeh, Correlation between Zener–Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel, Materials Science and Engineering: A, 501(1), 16-25 (2009)
67. C. Li, S. Wang, D. Zhang, S. Liu, Z. Shan, X. Zhang, Effect of Zener-Hollomon parameter on quench sensitivity of 7085 aluminum alloy, Journal of Alloys and Compounds, 688, 456-462 (2016)
68. S.F. Medina, C.A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta materialia, 44(1), 137-148 (1996)
69. X.Y. Liu, Q.L. Pan, Y.B. He, W.B. Li, W.J. Liang, Z.M. Yin, Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation, Materials Science and Engineering: A, 500(1-2), 150-154 (2009)
70. A.A. Khamei, K. Dehghani, R. Mahmudi, Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation, Jom, 67(5), 966-972 (2015)
71. C.M. Sellars, W.J. McTegart, On the mechanism of hot deformation, Acta Metallurgica, 14(9), 1136-1138 (1966)
72. P.-w. Li, H.-z. Li, L. Huang, X.-p. Liang, Z.-x. Zhu, Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map, Transactions of Nonferrous Metals Society of China, 27(8), 1677-1688 (2017)
73. J. Ren, R. Wang, Y. Feng, C. Peng, Z. Cai, Hot deformation behavior and microstructural evolution of as-quenched 7055 Al alloy fabricated by powder hot extrusion, Materials Characterization, 156, (2019)
74. Z. Zheng, Y. Chen, F. Kong, X. Wang, Y. Yu, Hot Deformation Behavior and Hot Rolling Properties of a Nano-Y2O3 Addition Near-α Titanium Alloy, Metals, 11(5), 837 (2021)
75. Y. Lin, M.-S. Chen, J. Zhong, Prediction of 42CrMo steel flow stress at high temperature and strain rate, Mechanics Research Communications, 35(3), 142-150 (2008)
指導教授 李勝隆(Shen g -Long Lee) 審核日期 2024-4-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明