博碩士論文 111521050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.15.231.65
姓名 徐義茗(I-Ming Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於智慧型積分滑模控制之內藏式永磁同步馬達驅動強健無差拍預測電流控制
(Robust Deadbeat Predict Current Control Using Intelligent Integral Sliding Mode Control for Interior Permanent Magnet Synchronous Motor Drive)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本文提出了一種針對內藏式永磁同步馬達電機驅動的強健無差拍電流控制,該方式建立在智慧型積分滑模控制基礎上,並結合自適應類神經網路。無差拍電流控制以其對電機驅動參數變化和外部干擾的敏感性而聞名,因此對其進行增加強健性的需求日益迫切。為了解決這個問題,本研究旨在減輕無差拍電流控制的參數敏感性,同時增強對干擾的整體強健性。首先推導考慮內藏式永磁同步馬達 dq軸時間延遲影響的無差拍電流控制建模和控制策略,還計算了dq軸的干擾項。提供積分滑模控制的詳細分析,該分析可以應對內藏式永磁同步馬達驅動的dq軸電流控制中的模型參數不匹配和干擾。此外為減小積分滑模控制的開關增益,提出使用自適應神經網路來估計dq軸干擾項的方法,從而實現智慧型積分滑模控制。實驗所使用之硬體為應用德州儀器公司生產之浮點數數位訊號處理器TMS320F28075之內藏式永磁同步馬達伺服驅動系統。
摘要(英) This study introduces a robust deadbeat predict current control (DPCC) scheme designed for an interior permanent magnet synchronous motor (IPMSM) drive. The scheme is built upon an intelligent integral sliding mode control (ISMC) by using an adaptive neural network (ANN). The DPCC, known for its sensitivity to motor drive parameter variations and external disturbances, prompted the need for enhanced robustness in current control. To address this, the proposed approach aims to mitigate the parameter sensitivity of DPCC and enhance the overall robustness of current control against disturbances. In this study, first, the modeling and control strategies of DPCC considering the effect of time delay for the dq-axis of IPMSM are derived. The disturbance terms of dq-axis are also formulated. Then, the detailed analyses of ISMC which can confront the model parameter mismatch and disturbances for the dq-axis current control of the IPMSM drive are provided. In addition, in order to reduce the switch gains of the ISMC, an ANN is proposed to estimate the disturbance terms of dq-axis resulted in an intelligent ISMC. Additionally, some experimental results are demonstrated to verify the effectiveness of the proposed robust DPCC using intelligent ISMC for the IPMSM drive in the constant toque region.
關鍵字(中) ★ 自適應神經網路
★ 無差拍電流控制
★ 內藏式永磁同步馬達
★ 積分滑模控制
關鍵字(英) ★ Adaptive neural network
★ deadbeat predict current control
★ interior permanent magnet synchronous motor
★ integral sliding mode control
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目綠 vii
表目錄 xiii
1 第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧與簡介 2
1.3 論文貢獻 4
1.4 論文大綱 4
2 第二章 內藏式永磁同步馬達變頻驅動器硬體介紹 5
2.1 簡介 5
2.2 變頻器 5
2.3 磁粉式煞車 6
2.4 數位訊號處理器 7
2.5 驅動控制電路板 10
3 第三章 內藏式永磁同步馬達驅動系統 15
3.1 前言 15
3.2 三相座標轉換 16
3.3 內藏式永磁同步馬達在abc座標系下之數學模型 19
3.4 內藏式永磁同步馬達在αβ座標系下之數學模型 21
3.5 內藏式永磁同步馬達在d-q座標系下之數學模型 25
3.6 凸極式反電動勢定義 27
3.7內藏式永磁同步馬達控制系統 29
3.7.1 傳統PI速度控制與電流控制 30
3.7.2 速度比例積分控制器設計 33
3.7.4 每安培最大轉矩控制 34
3.7.5 積分滑模控制之無差拍預測電流控制、智慧型積分滑模控制之無差拍預測電流控制 35
4 第四章 基於積分滑模控制之無差拍預測電流控制 37
4.1 前言 37
4.2 無差拍預測電流控制 38
4.3 參數誤差與外部擾動估計 40
4.4 基於積分滑模控制之無差拍預測電流控制 41
4.5 基於積分滑模控制之無差拍預測電流控制穩定性證明 42
5 第五章 基於自適應神經網路的智慧型積分滑模控制 43
5.1 前言 43
5.2 基於自適應類神經網路的智慧型積分滑模控制 43
5.3 自適應類神經網路 44
5.4 線上學習法則 45
5.5 網路收斂性 46
6 第六章 模擬與實驗結果 48
6.1 前言 48
6.2 模擬結果 50
6.3 模擬結果分析與討論 61
6.4 實驗結果 63
6.5 實驗結果分析與討論 70
6.6 頻寬量測與比較 72
7 第七章 結論與未來研究方向 84
7.1 結論 84
7.2 未來展望 84
參考文獻 86
作者簡歷 91
參考文獻 [1] M. Tian, B. Wang, Y. Yu, Q. Dong and D. Xu, "Discrete-Time Repetitive Control-Based ADRC for Current Loop Disturbances Suppression of PMSM Drives," IEEE Trans. Ind. Informat., vol. 18, no. 5, pp. 3138-3149, May. 2022.
[2] X. Yuan, S. Xie, J. Chen, S. Zhang, C. Zhang and C. H. T. Lee, "An Enhanced Deadbeat Predictive Current Control of SPMSM with Linear Disturbance Observer," IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 5, pp. 6304-6316, Oct. 2022.
[3] X. Sun, Y. Zhang, Y. Cai and X. Tian, "Compensated Deadbeat Predictive Current Control Considering Disturbance and VSI Nonlinearity for In-Wheel PMSMs," IEEE/ASME Trans. Mechatron., vol. 27, no. 5, pp. 3536-3547, Oct. 2022.
[4] L. Z. Qu, W. Qiao, and L. Y. Qu, “Active-disturbance-rejection-based sliding-mode current control for permanent-magnet synchronous motors,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 751–760, Jan. 2021.
[5] F. Bernardi, E. Carfagna, G. Migliazza, G. Buticchi, F. Immovilli and E. Lorenzani, "Performance Analysis of Current Control Strategies for Hybrid Stepper Motors," IEEE Open J. Ind. Electron. Soc, vol. 3, pp. 460-472, 2022.
[6] A. Ajmi, S. Krim, A. Hosseyni, M. Mansouri and M. F. Mimouni, "Robust Variable Structure Control Approach of Two Series-Connected Five-Phase PMSMs Under Healthy and Faulty Operation Modes," IEEE Access, vol. 11, pp. 96401-96422, 2023.
[7] X. Li, W. Tian, X. Gao, Q. Yang and R. Kennel, "A Generalized Observer-Based Robust Predictive Current Control Strategy for PMSM Drive System," IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1322-1332, Feb. 2022.
[8] S. Dai, J. Wang, Z. Sun and E. Chong, "Deadbeat Predictive Current Control for High-Speed Permanent Magnet Synchronous Machine Drives with Low Switching-To-Fundamental Frequency Ratios," IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 4510-4521, May. 2022.
[9] Y. Yao, Y. Huang, F. Peng, J. Dong and H. Zhang, "An Improved Deadbeat Predictive Current Control with Online Parameter Identification for Surface-Mounted PMSMs," IEEE Trans. Ind. Electron, vol. 67, no. 12, pp. 10145-10155, Dec. 2020.
[10] Z. Sun, Y. Deng, J. Wang, T. Yang, Z. Wei and H. Cao, "Finite Control Set Model-Free Predictive Current Control of PMSM With Two Voltage Vectors Based on Ultralocal Model," IEEE Trans Power Electron., vol. 38, no. 1, pp. 776-788, Jan. 2023.
[11] C. Li, Y. Yan, Z. Wang, Q. Geng, T. Shi and C. Xia, "Model Predictive Current Control with Variable Gain Adaptive Observer Based on Current Augmenter Prediction Model for IPMSM Drives," IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6131-6144, Jun. 2022.
[12] I. Hammoud, S. Hentzelt, T. Oehlschlagel, M. Abdelrahem, C. Hackl, R. Kennel, "On Continuous-Set Model Predictive Control of Permanent Magnet Synchronous Machines," IEEE Trans Power Electron., vol. 37, no. 9, pp. 10360-10371, Sept. 2022.
[13] Y. Wang, W. Liao, S. Huang, J. Zhang, M. Yang, C. Li, S Huang, "A Robust DPCC for IPMSM Based on a Full Parameter Identification Method," IEEE Trans. Ind. Electron., vol. 70, no. 8, pp. 7695-7705, Aug. 2023.
[14] Z. Liu, X. Huang, Q. Hu, Z. Li, Z. Jiang, Y. Yu, Z. Chen, "A Modified Deadbeat Predictive Current Control for Improving Dynamic Performance of PMSM," IEEE Trans. Power Electron., vol. 37, no. 12, pp. 14173-14185, Dec. 2022.
[15] M. Zhao, S. Zhang, X. Li, C. Zhang and Y. Zhou, “Parameter Robust Deadbeat Predictive Current Control for Open-Winding Surface Permanent Magnet Synchronous Motor Drives,” IEEE J. Emerg. Sel. Top. Power Electron, vol. 11, no. 3, pp. 3117-3126, Jun. 2023.
[16] P. Gonçalves, S. M. A. Cruz, and A. M. S. Mendes, “Disturbance observer based predictive current control of six-phase permanent magnet synchronous machines for the mitigation of steady-state errors and current harmonics,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 130–140, 2022.
[17] P. Wang, Y. Bi, F. Gao, T. Song, and Y. Zhang, “An improved deadbeat control method for single-phase PWM rectifiers in charging system for EVs,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 9672–9681, Oct. 2019.
[18] G. Fuhui and L. Pingli, ‘‘Fast self-adapting high-order sliding mode control for a class of uncertain nonlinear systems’’ J. Syst. Eng. Electron., vol. 32, no. 3, pp. 690-699, Jun. 2021.
[19] W. Hui, Q. Xiaohui, and L. Jie, ‘‘Stability analysis of linear/nonlinear switching active disturbance rejection control based MIMO continuous systems,’’ J. Syst. Eng. Electron., vol. 32, no. 4, pp. 956–970, Aug. 2021.
[20] J. L. Bao, H. Q. Wang, P. X. Liu, and C. Cheng, “Fuzzy finite-time tracking control for a class of nonaffine nonlinear systems with unknown dead zones,” IEEE Trans. Syst. Man Cybern., vol. 51, no. 1, pp. 452–463, Jan. 2021.
[21] N. Jeeranantasin and S. Nungam, ‘‘Sliding Mode Control of Three-Phase AC/DC Converters using Exponential Rate Reaching Law,” J. Syst. Eng. Electron., vol. 33, no. 1, pp.210-221, Feb. 2022.
[22] Z. Mao, X. G. Yan, B. Jiang and S. K. Spurgeon, "Sliding Mode Control of Nonlinear Systems with Input Distribution Uncertainties," IEEE Trans. Autom. Control, vol. 68, no. 10, pp. 6208-6215, Oct. 2023.
[23] F. J. Lin, S. G. Chen, M. S. Huang, C. H. Liang, and C. H. Liao, “Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 141–150, Jan. 2022.
[24] Y. Ma, D. Li, Y. Li, and L. Yang, “A novel discrete compound integral terminal sliding mode control with disturbance compensation for PMSM speed system,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 1, pp. 549–560, Feb. 2022.
[25] N. Sacchi, G. P. Incremona, and A. Ferrara, “Neural network-based practical/ideal integral sliding mode control,” IEEE Contr. Syst. Lett., vol. 6, pp. 3140–3145, 2022.
[26] R. Galván-Guerra, G. P. Incremona, L. Fridman and A. Ferrara, “Robust Multi-Model Predictive Control via Integral Sliding Modes,” IEEE Contr. Syst. Lett., vol. 6, pp. 2623-2628, 2022.
[27] I. Sami, S. Ullah, A. Basit, N. Ullah, and J. S. Ro, “Integral super twisting sliding mode based sensorless predictive torque control of induction motor,” IEEE Access, vol. 8, pp. 186740–186755, 2020.
[28] S. Y. Chen and F. J. Lin, ‘‘Decentralized PID neural network control for five degree-of-freedom active magnetic bearing,’’ Eng. Appl. Artif. Intell., vol. 26, no. 3, pp. 962–973, Mar. 2013.
[29] 盛暘科技股份有限公司,數位訊號處理,2007。
[30] Texas Instruments, TMS320F28075 datasheet.
[31] MCP4922 datasheet.
[32] 黃泰寅:<新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發>,碩士論文,電機工程學系,國立中央大學,民國106年。
[33] 周孝澤:<應用於內藏式永磁同步馬達之智慧型慣量估測及共振頻率偵測>,碩士論文,電機工程學系,國立中央大學,民國108年。
[34] 林俊儒:<應用於內藏式永磁同步馬達之智慧型高效能控制及小波共振頻率偵測>,碩士論文,電機工程學系,國立中央大學,民國109年。
[35] 林威廷:<內藏式永磁同步馬達之電流注入線上參數估測與智慧型電流迴路控制>,碩士論文,電機工程學系,國立中央大學,民國110年。
[36] 陳家銘:<以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發>,碩士論文,電機工程學系,國立中央大學,民國102年。
[37] Texas Instruments, TMS320F28075 datasheet.
[38] K. Ahsanullah, R. Dutta and M. F. Rahman, “Analysis of low-speed IPMMs with distributed and fractional slot concentrated windings for wind energy applications,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1-10, Nov. 2017
[39] 陳航生:<內藏式永磁同步馬達之特性分析及其電動機車之應用>,碩士論文,電機工程學系,國立中央大學,民國93年。
[40] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[41] 高子胤:<以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發>,碩士論文,電機工程學系,國立中央大學,民國100年。
[42] F. J. Lin, S. G. Chen, Y. T. Liu, and W. A. Yu, “Online autotuning of a servo drive using wavelet fuzzy neural network to search for the optimal bandwidth,” IEEE SMC Magazine, , pp. 28-37, Oct. 2018.
[43] 簡佑宸:<利用遞迴小波模糊類神經網路於永磁輔助同步磁阻馬達位置驅動系統之智慧型步階回歸控制>,碩士論文,電機工程學系,國立中央大學,民國112年。
[44] J. A. Suul, K. Ljokelsoy, T. Midtsund and T. Undeland, "Synchronous reference frame hysteresis current control for grid converter applications", IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2183-2194, Sep./Oct. 2011.
[45] M. P. Kazmierkowski and L. Malesani, "Current control techniques for three-phase voltage-source PWM converters: A survey", IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[46] A. A. Ahmed, J. S. Kim and Y. I. Lee, "Model predictive torque control of PMSM for EV drives: A comparative study of finite control set and predictive dead-beat control schemes," 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, 2016.
[47] Y. Zhang, T. Zhao, H. Jing, J. Li and X. Gui, "A Robust Deadbeat Predictive Control Scheme for Dual Three-Phase PMSM," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, 2018.
[48] C. C. Chen, S. S. D. Xu, and Y. W. Liang, “Study of nonlinear integral sliding mode fault-tolerant control,” IEEE/ASME Trans. Mechatron., vol. 21, no. 2, pp. 1160–1168, Apr. 2016.
[49] U. Itkis, ‘‘Control systems of variable structure,’’ (Wiley, New York, 1986)
[50] J. Yim, S. You, Y. Lee, and W. Kim, “Chattering attenuation disturbance observer for sliding mode control: Application to permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 70, no. 5, pp. 5161–5170, May. 2023.
[51] F. J. Lin, S. G. Chen, S. Li, H. T. Chou, and J. R. Lin, “Online autotuning technique for IPMSM servo drive by intelligent identification of moment of inertia,” IEEE Trans. Ind. Informat., vol. 16, no. 12, pp. 7579–7590, Dec. 2020.
[52] F. J. Lin, S. G. Chen, M. S. Huang, C. H. Liang, and C. H. Liao, “Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 141–150, Jan. 2022.
[53] NF FRA-51602, datasheet. 檢自:
https://www.nfcorp.co.jp/english/pro/mi/fre/fra51602/index.html
[54] 王伯綸:<利用遞迴小波模糊類神經網路於永磁輔助同步磁阻馬達位置驅動系統之智慧型步階回歸控制>,碩士論文,電機工程學系,國立中央大學,民國112年。
[55] X. Li, S. Zhang, C. Zhang, Y. Zhou and C. Zhang, "An Improved Deadbeat Predictive Current Control Scheme for Open-Winding Permanent Magnet Synchronous Motors Drives with Disturbance Observer," IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4622-4632, Apr. 2021.
[56] J. Bocker, S. Beineke and A. Bahr, "On the control bandwidth of servo drives, " Proc. 13th Eur. Conf. Power Electron. Appl., 2009
[57] Y. C. Zhuo, C. J. Hsu, Z. H. Qiu, and Y. S. Lai, “Bandwidth Boost Method of Current Control for Servo Motor Drives with Current Observer,” 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, Nov. 2021
指導教授 林法正(Faa-Jeng Lin) 審核日期 2024-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明