參考文獻 |
[1] M. Tian, B. Wang, Y. Yu, Q. Dong and D. Xu, "Discrete-Time Repetitive Control-Based ADRC for Current Loop Disturbances Suppression of PMSM Drives," IEEE Trans. Ind. Informat., vol. 18, no. 5, pp. 3138-3149, May. 2022.
[2] X. Yuan, S. Xie, J. Chen, S. Zhang, C. Zhang and C. H. T. Lee, "An Enhanced Deadbeat Predictive Current Control of SPMSM with Linear Disturbance Observer," IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 5, pp. 6304-6316, Oct. 2022.
[3] X. Sun, Y. Zhang, Y. Cai and X. Tian, "Compensated Deadbeat Predictive Current Control Considering Disturbance and VSI Nonlinearity for In-Wheel PMSMs," IEEE/ASME Trans. Mechatron., vol. 27, no. 5, pp. 3536-3547, Oct. 2022.
[4] L. Z. Qu, W. Qiao, and L. Y. Qu, “Active-disturbance-rejection-based sliding-mode current control for permanent-magnet synchronous motors,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 751–760, Jan. 2021.
[5] F. Bernardi, E. Carfagna, G. Migliazza, G. Buticchi, F. Immovilli and E. Lorenzani, "Performance Analysis of Current Control Strategies for Hybrid Stepper Motors," IEEE Open J. Ind. Electron. Soc, vol. 3, pp. 460-472, 2022.
[6] A. Ajmi, S. Krim, A. Hosseyni, M. Mansouri and M. F. Mimouni, "Robust Variable Structure Control Approach of Two Series-Connected Five-Phase PMSMs Under Healthy and Faulty Operation Modes," IEEE Access, vol. 11, pp. 96401-96422, 2023.
[7] X. Li, W. Tian, X. Gao, Q. Yang and R. Kennel, "A Generalized Observer-Based Robust Predictive Current Control Strategy for PMSM Drive System," IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1322-1332, Feb. 2022.
[8] S. Dai, J. Wang, Z. Sun and E. Chong, "Deadbeat Predictive Current Control for High-Speed Permanent Magnet Synchronous Machine Drives with Low Switching-To-Fundamental Frequency Ratios," IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 4510-4521, May. 2022.
[9] Y. Yao, Y. Huang, F. Peng, J. Dong and H. Zhang, "An Improved Deadbeat Predictive Current Control with Online Parameter Identification for Surface-Mounted PMSMs," IEEE Trans. Ind. Electron, vol. 67, no. 12, pp. 10145-10155, Dec. 2020.
[10] Z. Sun, Y. Deng, J. Wang, T. Yang, Z. Wei and H. Cao, "Finite Control Set Model-Free Predictive Current Control of PMSM With Two Voltage Vectors Based on Ultralocal Model," IEEE Trans Power Electron., vol. 38, no. 1, pp. 776-788, Jan. 2023.
[11] C. Li, Y. Yan, Z. Wang, Q. Geng, T. Shi and C. Xia, "Model Predictive Current Control with Variable Gain Adaptive Observer Based on Current Augmenter Prediction Model for IPMSM Drives," IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6131-6144, Jun. 2022.
[12] I. Hammoud, S. Hentzelt, T. Oehlschlagel, M. Abdelrahem, C. Hackl, R. Kennel, "On Continuous-Set Model Predictive Control of Permanent Magnet Synchronous Machines," IEEE Trans Power Electron., vol. 37, no. 9, pp. 10360-10371, Sept. 2022.
[13] Y. Wang, W. Liao, S. Huang, J. Zhang, M. Yang, C. Li, S Huang, "A Robust DPCC for IPMSM Based on a Full Parameter Identification Method," IEEE Trans. Ind. Electron., vol. 70, no. 8, pp. 7695-7705, Aug. 2023.
[14] Z. Liu, X. Huang, Q. Hu, Z. Li, Z. Jiang, Y. Yu, Z. Chen, "A Modified Deadbeat Predictive Current Control for Improving Dynamic Performance of PMSM," IEEE Trans. Power Electron., vol. 37, no. 12, pp. 14173-14185, Dec. 2022.
[15] M. Zhao, S. Zhang, X. Li, C. Zhang and Y. Zhou, “Parameter Robust Deadbeat Predictive Current Control for Open-Winding Surface Permanent Magnet Synchronous Motor Drives,” IEEE J. Emerg. Sel. Top. Power Electron, vol. 11, no. 3, pp. 3117-3126, Jun. 2023.
[16] P. Gonçalves, S. M. A. Cruz, and A. M. S. Mendes, “Disturbance observer based predictive current control of six-phase permanent magnet synchronous machines for the mitigation of steady-state errors and current harmonics,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 130–140, 2022.
[17] P. Wang, Y. Bi, F. Gao, T. Song, and Y. Zhang, “An improved deadbeat control method for single-phase PWM rectifiers in charging system for EVs,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 9672–9681, Oct. 2019.
[18] G. Fuhui and L. Pingli, ‘‘Fast self-adapting high-order sliding mode control for a class of uncertain nonlinear systems’’ J. Syst. Eng. Electron., vol. 32, no. 3, pp. 690-699, Jun. 2021.
[19] W. Hui, Q. Xiaohui, and L. Jie, ‘‘Stability analysis of linear/nonlinear switching active disturbance rejection control based MIMO continuous systems,’’ J. Syst. Eng. Electron., vol. 32, no. 4, pp. 956–970, Aug. 2021.
[20] J. L. Bao, H. Q. Wang, P. X. Liu, and C. Cheng, “Fuzzy finite-time tracking control for a class of nonaffine nonlinear systems with unknown dead zones,” IEEE Trans. Syst. Man Cybern., vol. 51, no. 1, pp. 452–463, Jan. 2021.
[21] N. Jeeranantasin and S. Nungam, ‘‘Sliding Mode Control of Three-Phase AC/DC Converters using Exponential Rate Reaching Law,” J. Syst. Eng. Electron., vol. 33, no. 1, pp.210-221, Feb. 2022.
[22] Z. Mao, X. G. Yan, B. Jiang and S. K. Spurgeon, "Sliding Mode Control of Nonlinear Systems with Input Distribution Uncertainties," IEEE Trans. Autom. Control, vol. 68, no. 10, pp. 6208-6215, Oct. 2023.
[23] F. J. Lin, S. G. Chen, M. S. Huang, C. H. Liang, and C. H. Liao, “Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 141–150, Jan. 2022.
[24] Y. Ma, D. Li, Y. Li, and L. Yang, “A novel discrete compound integral terminal sliding mode control with disturbance compensation for PMSM speed system,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 1, pp. 549–560, Feb. 2022.
[25] N. Sacchi, G. P. Incremona, and A. Ferrara, “Neural network-based practical/ideal integral sliding mode control,” IEEE Contr. Syst. Lett., vol. 6, pp. 3140–3145, 2022.
[26] R. Galván-Guerra, G. P. Incremona, L. Fridman and A. Ferrara, “Robust Multi-Model Predictive Control via Integral Sliding Modes,” IEEE Contr. Syst. Lett., vol. 6, pp. 2623-2628, 2022.
[27] I. Sami, S. Ullah, A. Basit, N. Ullah, and J. S. Ro, “Integral super twisting sliding mode based sensorless predictive torque control of induction motor,” IEEE Access, vol. 8, pp. 186740–186755, 2020.
[28] S. Y. Chen and F. J. Lin, ‘‘Decentralized PID neural network control for five degree-of-freedom active magnetic bearing,’’ Eng. Appl. Artif. Intell., vol. 26, no. 3, pp. 962–973, Mar. 2013.
[29] 盛暘科技股份有限公司,數位訊號處理,2007。
[30] Texas Instruments, TMS320F28075 datasheet.
[31] MCP4922 datasheet.
[32] 黃泰寅:<新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發>,碩士論文,電機工程學系,國立中央大學,民國106年。
[33] 周孝澤:<應用於內藏式永磁同步馬達之智慧型慣量估測及共振頻率偵測>,碩士論文,電機工程學系,國立中央大學,民國108年。
[34] 林俊儒:<應用於內藏式永磁同步馬達之智慧型高效能控制及小波共振頻率偵測>,碩士論文,電機工程學系,國立中央大學,民國109年。
[35] 林威廷:<內藏式永磁同步馬達之電流注入線上參數估測與智慧型電流迴路控制>,碩士論文,電機工程學系,國立中央大學,民國110年。
[36] 陳家銘:<以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發>,碩士論文,電機工程學系,國立中央大學,民國102年。
[37] Texas Instruments, TMS320F28075 datasheet.
[38] K. Ahsanullah, R. Dutta and M. F. Rahman, “Analysis of low-speed IPMMs with distributed and fractional slot concentrated windings for wind energy applications,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1-10, Nov. 2017
[39] 陳航生:<內藏式永磁同步馬達之特性分析及其電動機車之應用>,碩士論文,電機工程學系,國立中央大學,民國93年。
[40] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[41] 高子胤:<以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發>,碩士論文,電機工程學系,國立中央大學,民國100年。
[42] F. J. Lin, S. G. Chen, Y. T. Liu, and W. A. Yu, “Online autotuning of a servo drive using wavelet fuzzy neural network to search for the optimal bandwidth,” IEEE SMC Magazine, , pp. 28-37, Oct. 2018.
[43] 簡佑宸:<利用遞迴小波模糊類神經網路於永磁輔助同步磁阻馬達位置驅動系統之智慧型步階回歸控制>,碩士論文,電機工程學系,國立中央大學,民國112年。
[44] J. A. Suul, K. Ljokelsoy, T. Midtsund and T. Undeland, "Synchronous reference frame hysteresis current control for grid converter applications", IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2183-2194, Sep./Oct. 2011.
[45] M. P. Kazmierkowski and L. Malesani, "Current control techniques for three-phase voltage-source PWM converters: A survey", IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[46] A. A. Ahmed, J. S. Kim and Y. I. Lee, "Model predictive torque control of PMSM for EV drives: A comparative study of finite control set and predictive dead-beat control schemes," 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, 2016.
[47] Y. Zhang, T. Zhao, H. Jing, J. Li and X. Gui, "A Robust Deadbeat Predictive Control Scheme for Dual Three-Phase PMSM," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, 2018.
[48] C. C. Chen, S. S. D. Xu, and Y. W. Liang, “Study of nonlinear integral sliding mode fault-tolerant control,” IEEE/ASME Trans. Mechatron., vol. 21, no. 2, pp. 1160–1168, Apr. 2016.
[49] U. Itkis, ‘‘Control systems of variable structure,’’ (Wiley, New York, 1986)
[50] J. Yim, S. You, Y. Lee, and W. Kim, “Chattering attenuation disturbance observer for sliding mode control: Application to permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 70, no. 5, pp. 5161–5170, May. 2023.
[51] F. J. Lin, S. G. Chen, S. Li, H. T. Chou, and J. R. Lin, “Online autotuning technique for IPMSM servo drive by intelligent identification of moment of inertia,” IEEE Trans. Ind. Informat., vol. 16, no. 12, pp. 7579–7590, Dec. 2020.
[52] F. J. Lin, S. G. Chen, M. S. Huang, C. H. Liang, and C. H. Liao, “Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 141–150, Jan. 2022.
[53] NF FRA-51602, datasheet. 檢自:
https://www.nfcorp.co.jp/english/pro/mi/fre/fra51602/index.html
[54] 王伯綸:<利用遞迴小波模糊類神經網路於永磁輔助同步磁阻馬達位置驅動系統之智慧型步階回歸控制>,碩士論文,電機工程學系,國立中央大學,民國112年。
[55] X. Li, S. Zhang, C. Zhang, Y. Zhou and C. Zhang, "An Improved Deadbeat Predictive Current Control Scheme for Open-Winding Permanent Magnet Synchronous Motors Drives with Disturbance Observer," IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4622-4632, Apr. 2021.
[56] J. Bocker, S. Beineke and A. Bahr, "On the control bandwidth of servo drives, " Proc. 13th Eur. Conf. Power Electron. Appl., 2009
[57] Y. C. Zhuo, C. J. Hsu, Z. H. Qiu, and Y. S. Lai, “Bandwidth Boost Method of Current Control for Servo Motor Drives with Current Observer,” 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, Nov. 2021 |