博碩士論文 108383601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.144.172.125
姓名 阮懷(Nguyen Hoai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 奈秒脈衝雷射穿透式焊接玻璃/銅焊合焊合之特性與性能評估
(Characterization and Performance Evaluation of Glass/Copper Weld through Pulsed Nano-second Laser Transmission Welding)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 在這項研究中,我們透過奈秒脈衝雷射傳輸焊接探索了銅和玻璃之間的異質鍵合過程。 研究了各種加工參數,包括雷射能量、焦平面位置、雷射線能量強度、掃描總數以及塗有玻璃的薄鈦黏合促進層對黏合品質的影響。
研究了雷射鍵合能量和焦平面位置對焊接品質的影響,利用拉拉分離力 (PTSF) 和剪切拉伸分離力 (STSF) 測量來評估焊接強度。 雷射焊接能量的增加將焊接強度提高到一定閾值,超過該閾值,不規則的熱點會導致空隙或裂紋,從而導致焊接區域內產生殘餘應力。 玻璃/銅界面下方的焦平面位置表現出最高的焊接強度。 此外,使用 PTSF 測量的焊接強度超過了 STSF,這歸因於 PTSF 中焊縫-玻璃邊界處和 STSF 中沿著焊縫-銅界面的分離。脈衝雷射焊接展示了銅與玻璃應用的經濟可行性,實現了超過 10 MPa 的最大黏合強度。 SEM 和 EDS 分析揭示了熔池中 Cu 和 SiO2 的內部混合和顆粒間擴散,而焊接界面處的 HR-TEM 和 SAED 觀察結果表明存在多晶銅奈米顆粒、銅氧化物和非晶 Cu-O-Si。
考慮總掃描次數和雷射線能量強度,探索適合雷射鍵合機制的鍵結參數,揭示了焊接區範圍與掃描次數之間的直接相關性。 透過改變雷射線能量強度來實現對元素成分和微觀結構的控制。 儘管熔化區Cu微粒分佈不同,但焊接的均勻性歸因於內部混合和相互擴散過程。
添加不同厚度的鈦薄膜進一步提高了焊接性能。 研究了透射雷射焊接和薄鈦黏合促進層對增強黏合強度的影響。 每個製程參數對黏合品質的影響都經過徹底檢查,以簡化複雜性並確定適當的製程視窗。 對於特定厚度,觀察到焊接強度增加和線能量強度增加的一致模式,在 10 nm Titanium 厚度下實現了 40.15 MPa 的最大黏合剪切強度。 SEM 分析揭示了層間厚度對 Cu/SiO2 接頭微觀結構的影響。
透過 XRD 和 HR-XPS 鑑定了導致 Cu/SiO2 界面附近形成非晶態 Cu-O-Ti 化合物的化學反應。 EDS 圖提供了 Cu、Ti 和 SiO2 的內部混合和相互擴散所發揮的重要作用的證據。 SAED 和 HR-TEM 觀察結果表明,焊接界面處存在多晶 Cu、α-Ti 奈米粒子、CuTi、Cu2O 和非晶 Cu-O-Ti 區域。 這些發現對於提高銅和玻璃之間的焊接品質至關重要,使接頭在各種工業生產應用中更加可靠。
摘要(英) In this study, we explored the process of heterogeneous bonding between copper and glass through nanosecond pulsed laser transmission welding. Various processing parameters, including laser energy, focal plane positions, laser line energy intensity, the total number of scans, and the impact of a thin titanium adhesion promotion layer coated with glass on bonding quality were investigated.
The effects of laser bonding energy and focal plane positions on welding quality were examined, utilizing pull-tensile separation force (PTSF) and shear-tensile separation force (STSF) measurements to assess weld strength. Increased laser welding energy enhanced weld strength up to a certain threshold, beyond which irregular hot spots led to voids or cracks, resulting in residual stress within the weld zone. The focal plane position below the glass/copper interface exhibited the highest weld strength. Additionally, weld strength measured using PTSF surpassed that of STSF, attributed to separation at the weld seam-glass boundary in PTSF and along the weld-copper interface in STSF. Pulsed laser welding demonstrated economic viability for copper-to-glass applications, achieving a maximum bond strength exceeding 10 MPa. SEM and EDS analysis revealed intra-mixing and inter-particle diffusion of Cu and SiO2 in the molten pool, while HR-TEM and SAED observations at the weld interface showed the presence of polycrystalline copper nanoparticles, copper oxides, and an amorphous Cu–O–Si region.
Exploring suitable bonding parameters for the laser bonding mechanism, considering both total scan number and laser line energy intensity, revealed a direct correlation between weld zone extent and scanning number. Control over elemental composition and microstructure was achieved by varying laser line energy intensity. The uniformity of the weld seam was attributed to the intra-mixing and inter-diffusion process, despite the different distribution of Cu micro-particles in the molten zone.
The addition of titanium thin films of varying thicknesses further improved welding performance. The influence of transmission laser welding and a thin titanium adhesion promotion layer on bonding strength enhancement was investigated. Each processing parameter′s impact on bonding quality was thoroughly examined to simplify complexities and identify an appropriate processing window. A consistent pattern of increased weld strength with higher line energy intensity was observed for a particular thickness, with a maximum bonding shear strength of 40.15 MPa achieved at 10 nm Ti thickness. SEM analysis revealed the impact of interlayer thickness on the Cu/SiO2 joint microstructure.
Chemical reactions resulting in the formation of an amorphous Cu-O-Ti compound near the Cu/SiO2 interface were identified through XRD and HR-XPS. EDS mappings provided evidence of the significant roles played by intra-mixing and inter-diffusion of Cu, Ti, and SiO2. SAED and HR-TEM observations elucidated the presence of polycrystalline Cu, α-Ti nanoparticles, CuTi, Cu2O, and an amorphous Cu-O-Ti region at the weld interface. These findings hold critical importance in enhancing the welding quality between copper and glass, rendering the joint more reliable for diverse industrial production applications.
關鍵字(中) ★ 雷射透射焊接
★ 玻璃/銅黏合
★ 微觀結構
★ Cu-O-Si共晶化合物
★ 黏接強度
★ 附著力促進層
關鍵字(英) ★ Laser transmission welding
★ Glass/copper bonding
★ Microstructure
★ Cu-O-Si eutectic compound
★ Bonding strength
★ Adhesion promotion layer
論文目次 摘 要 i
ABSTRACT iii
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF FIGURES vii
LIST OF TABLES xiv
LIST OF ABBREVIATIONS xv
Chapter 1. INTRODUCTION 1
1.1 Background 1
1.2 Literature review 3
1.2.1 Applications of laser transmission welding for metal/glass joints 3
1.2.2 Effect of processing parameters on the bonding quality of metal/glass joints 5
1.2.3 Welding morphology and microstructure analysis of metal/glass joints 6
1.2.4 Effect of interlayer on bonding quality of metal/glass joints 8
1.3 Objective 10
1.4 Thesis outlines 11
1.5 Scientific findings 12
Chapter 2. EXPERIMENTAL PROCEDURE 13
2.1 Material and characteristics of laser bonding 16
2.1.1 Materials preparation 16
2.1.2 Surface cleaning 19
2.1.3 Laser welding 20
2.2 Experimental setup 23
2.2.1 Influence of laser energy and focal position 23
2.2.2 Influence of laser line energy intensity and total number of scans 25
2.2.3 Influence of titanium adhesion promotion layer and its properties 26
2.3 Characterization of measurement 28
2.3.1 Weld line and weld seam properties 28
2.3.2 Breaking strength 32
2.3.3 Weld morphology 34
Chapter 3. RESULTS AND DISCUSSION 35
3.1 Influence of the laser energy and focal position on the bonding quality 35
3.1.1 Bonding strength 35
3.1.2 Weld morphology 39
3.1.3 Elemental analysis and phase identification 48
3.2 Influence of the laser line energy intensity and the total number of scans on the welded Cu/SiO2 bonding quality 53
3.2.1 Welding strength 54
3.2.2 Joint morphology 57
3.2.3 Microstructure and nanostructure analysis 62
3.2.4 Elemental composition 69
3.2.5 Fracture morphology analysis 72
3.3 Influence of titanium interlayers on the welded Cu/SiO2 bonding quality 75
3.3.1 Weld strength 76
3.3.2 Morphology of the weld zones 78
3.3.3 Microstructure analysis 83
3.3.4 Elemental analysis and phase observation 85
Chapter 4. CONCLUSIONS 93
REFERENCES 97
APPENDIX 104
PUBLICATIONS 108
參考文獻 [1] Y. Ozeki et al., "Direct welding between copper and glass substrates with femtosecond laser pulses," Applied physics express, Vol. 1, No. 8, 2008, p. 082601.
[2] G. Zhang and G. Cheng, "Direct welding of glass and metal by 1 kHz femtosecond laser pulses," Applied Optics, Vol. 54, No. 30, 2015, pp. 8957-8961.
[3] Q. Lia, G. Matthäusa, and S. Noltea, "Glass to copper direct welding with a rough surface by femtosecond laser pulse bursts," in Lasers in Manufacturing Conference, 2021.
[4] S. Matsuyoshi, Y. Mizuguchi, A. Muratsugu, H. Yamada, T. Tamaki, and W. Watanabe, "Welding of glass and copper with a rough surface using femtosecond fiber laser pulses," Journal of Laser Micro Nanoengineering, Vol. 13, No. 1, 2018, pp. 21-25.
[5] Y. Wang, Y. Li, S. Ao, Z. Luo, and D. Zhang, "Welding of 304 stainless steel and glass using high-repetition-frequency femtosecond laser," Materials Research Express, Vol. 8, No. 10, 2021, p. 106523.
[6] L. Zhang, H. Wu, J. Wen, M. Li, X. Shao, and X. Ma, "Glass to aluminum joining by forming a mechanical pin structure using femtosecond laser," Journal of Materials Processing Technology, Vol. 302, 2022, p. 117504.
[7] R. M. Carter et al., "Towards industrial ultrafast laser microwelding: SiO 2 and BK7 to aluminum alloy," Applied optics, Vol. 56, No. 16, 2017, pp. 4873-4881.
[8] J. Chen, "Ultrafast laser microwelding of glass-to-glass and glass-to-opaque materials," Ph.D Dissertation, Heriot-Watt University, 2016.
[9] X. Jia, K. Li, Z. Li, C. Wang, J. Chen, and S. Cui, "Multi-scan picosecond laser welding of non-optical contact soda lime glass," Optics & Laser Technology, Vol. 161, 2023, p. 109164.
[10] S. S. Ham et al., "Jig-free laser welding of Eagle XG glasses by using a picosecond pulsed laser," Journal of Mechanical Science and Technology, Vol. 33, 2019, pp. 2825-2832.
[11] C. Li et al., "High shear strength welding of soda lime glass to stainless steel using an infrared nanosecond fiber laser assisted by surface tension," Optics and Lasers in Engineering, Vol. 161, 2023, p. 107329.
[12] A. Utsumi, T. Ooie, T. Yano, and M. Katsumura, "Direct bonding of glass and metal using short pulsed laser," Journal of Laser Micro/Nanoengineering, Vol. 2, No. 2, 2007, pp. 133-136.
[13] J. Huo et al., "The mechanism of the welding between silica glass and 304 stainless steel using nanosecond fibre laser," Science Technology of Welding and Joining, Vol. 28, No. 5, 2023, pp. 407-414.
[14] Y. Feng et al., "Direct joining of quartz glass and copper by nanosecond laser," Ceramics International, Vol. 49, No. 22, 2023, pp. 36056-36070.
[15] T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, "Welding of transparent materials using femtosecond laser pulses," Japanese journal of applied physics, Vol. 44, No. 5L, 2005, p. L687.
[16] J. Zhang et al., "The effect of gap on the quality of glass-to-glass welding using a picosecond laser," Optics and Lasers in Engineering, Vol. 134, 2020, p. 106248.
[17] O. P. Ciuca, R. M. Carter, P. B. Prangnell, and D. P. Hand, "Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds," Materials Characterization, Vol. 120, 2016, pp. 53-62.
[18] K. Wei, C.-K. Lin, P.-C. Tung, J.-R. Ho, and I. Y. Tsao, "Formation of subsurface Cu-O-Si system through laser-induced plasma-assisted copper penetration for fabricating robust adhesive copper wire on glass substrate," Applied Surface Science, Vol. 609, 2023, p. 155149.
[19] J. Huo et al., "Welding reinforcement between silica glass and stainless steel using nanosecond fiber laser with chromium interlayer," Optics and Lasers in Engineering, Vol. 172, 2024, p. 107877.
[20] C. Ding et al., "Development of bulk-titanium-based MEMS RF switch for harsh environment applications," ASME International Mechanical Engineering Congress and Exposition, Vol. 4224, 2005, pp. 123-126.
[21] E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, "Inductively coupled plasma etching of bulk titanium for MEMS applications," Journal of the electrochemical Society, Vol. 152, No. 10, 2005, p. C675.
[22] T. Tsuchiya, M. Hirata, and N. Chiba, "Young′s modulus, fracture strain, and tensile strength of sputtered titanium thin films," Thin Solid Films, Vol. 484, No. 1-2, 2005, pp. 245-250.
[23] Y. Fan, J. Fan, and C. Wang, "Formation of typical Cu–Ti intermetallic phases via a liquid-solid reaction approach," Intermetallics, Vol. 113, 2019, p. 106577.
[24] H. Nguyen, C.-K. Lin, P.-C. Tung, and J.-R. Ho, "Characterizations of laser transmission welding of glass and copper using nanosecond pulsed laser," The International Journal of Advanced Manufacturing Technology, Vol. 130, No. 5, 2024, pp. 2755-2770.
[25] R. M. Carter, J. Chen, J. D. Shephard, R. R. Thomson, and D. P. Hand, "Picosecond laser welding of similar and dissimilar materials," Applied optics, Vol. 53, No. 19, 2014, pp. 4233-4238.
[26] Y. Okamoto, Z. Ouyang, T. Fujiwara, and A. Okada, "Effect of numerical aperture on molten area characteristics in micro-joining of glass by picosecond pulsed laser," Welding in the World, Vol. 64, 2020, pp. 937-947.
[27] S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, and S. Nolte, "Toward laser welding of glasses without optical contacting," Applied Physics A, Vol. 121, 2015, pp. 1-9.
[28] H. Tan and J. a. Duan, "Welding of glasses in optical and partial-optical contact via focal position adjustment of femtosecond-laser pulses at moderately high repetition rate," Applied Physics A, Vol. 123, 2017, pp. 1-9.
[29] J. Zhang et al., "Microwelding of glass to silicon by green ultrafast laser pulses," Optics & Laser Technology, Vol. 120, 2019, p. 105720.
[30] Z. Min, C. Yufei, C. Changjun, and Q. Zhaoling, "A new sealing technology for ultra-thin glass to aluminum alloy by laser transmission welding method," The International Journal of Advanced Manufacturing Technology, Vol. 115, No. 7-8, 2021, pp. 2017-2035.
[31] M. Klinger, "More features, more tools, more CrysTBox," Journal of Applied Crystallography, Vol. 50, No. 4, 2017, pp. 1226-1234.
[32] W. Huang, H. Wang, T. Rinker, and W. Tan, "Investigation of metal mixing in laser keyhole welding of dissimilar metals," Materials & design, Vol. 195, 2020, p. 109056.
[33] X. Liu et al., "Support stabilized PtCu single-atom alloys for propane dehydrogenation," Chemical Science, Vol. 13, No. 33, 2022, pp. 9537-9543.
[34] E. Darwish, D. Yılmaz, and H. Leion, "Experimental and thermodynamic study on the interaction of copper oxygen carriers and oxide compounds commonly present in ashes," Energy & fuels, Vol. 33, No. 3, 2019, pp. 2502-2515.
[35] A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, C. J. J. N. I. o. S. Powell, and T. Gaithersburg, "NIST X-ray photoelectron spectroscopy database, version 4.1," 2012.
[36] J. Wang, T. Feng, J. Chen, J.-H. He, and X. Fang, "Flexible 2D cu metal: organic framework@ MXene film electrode with excellent durability for highly selective Electrocatalytic NH3 synthesis," Research, 2022.
[37] D. K. Sarkar, S. Bera, S. V. Narasimhan, S. Chowdhury, A. Gupta, and K. G. M. Nair, "GIXRD and XPS investigation of silicidation in ion beam mixed CuSi (1 1 1) system," Solid state communications, Vol. 107, No. 8, 1998, pp. 413-416.
[38] L. Xu et al., "In situ growth of Cu2O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for asymmetric supercapacitors," Frontiers in Chemistry, Vol. 7, 2019, p. 420.
[39] R. X. Chen et al., "Synthesis of CuO/Co 3 O 4 coaxial heterostructures for efficient and recycling photodegradation," International Journal of Photoenergy, Vol. 2015, 2015.
[40] Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, and S. Ruan, "Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors," Sensors and Actuators B: Chemical, Vol. 209, 2015, pp. 515-523.
[41] J. G. Jolley, G. G. Geesey, M. R. Hankins, R. B. Wright, and P. L. Wichlacz, "Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide," Applied Surface Science, Vol. 37, No. 4, 1989, pp. 469-480.
[42] A. N. Mansour, "Copper Mg Kα XPS spectra from the physical electronics model 5400 spectrometer," Surface Science Spectra, Vol. 3, No. 3, 1994, pp. 202-210.
[43] T. A. Dang and C. N. Chau, "Electron spectroscopy for chemical analysis of cool white phosphors coated with SiO2 thin film," Journal of the Electrochemical Society, Vol. 143, No. 1, 1996, p. 302.
[44] J. A. Taylor, G. M. Lancaster, A. Ignatiev, and J. W. Rabalais, "Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides," The Journal of Chemical Physics, Vol. 68, No. 4, 1978, pp. 1776-1784.
[45] G. Deroubaix and P. Marcus, "X‐ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides," Surface and Interface Analysis, Vol. 18, No. 1, 1992, pp. 39-46.
[46] R. Sreedharan, M. Mohan, S. Saini, A. Roy, and K. Bhattacharjee, "Intermediate Cu-O-Si phase in the Cu-SiO2/Si (111) system: growth, elemental, and electrical studies," ACS omega, Vol. 6, No. 37, 2021, pp. 23826-23836.
[47] W. Aarnink, A. Weishaupt, and A. Van Silfhout, "Angle-resolved X-ray photoelectron spectroscopy (ARXPS) and a modified Levenberg-Marquardt fit procedure: a new combination for modeling thin layers," Applied surface science, Vol. 45, No. 1, 1990, pp. 37-48.
[48] I. Olefjord, H. J. Mathieu, and P. Marcus, "Intercomparison of surface analysis of thin aluminium oxide films," Surface and interface analysis, vol. 15, no. 11, pp. 681-692, 1990.
[49] B. R. Strohmeier, D. E. Levden, R. S. Field, and D. M. Hercules, "Surface spectroscopic characterization of CuAl2O3 catalysts," Journal of Catalysis, Vol. 94, No. 2, 1985, pp. 514-530.
[50] T. Hagio, A. Takase, and S. Umebayashi, "X-ray photoelectron spectroscopic studies of β-sialons," Journal of materials science letters, Vol. 11, No. 12, 1992, pp. 878-880.
[51] G. Ertl, R. Hierl, H. Knözinger, N. Thiele, and H. P. Urbach, "XPS study of copper aluminate catalysts," Applications of Surface Science, Vol. 5, No. 1, 1980, pp. 49-64.
[52] W. E. Slink and P. B. DeGroot, "Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid," Journal of Catalysis, Vol. 68, No. 2, 1981, pp. 423-432.
[53] R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi, and S. Santucci, "XPS studies on SiOx thin films," Applied Surface Science, Vol. 70, 1993, pp. 222-225.
[54] R. P. Netterfield, P. J. Martin, C. G. Pacey, W. G. Sainty, D. R. McKenzie, and G. Auchterlonie, "Ion‐assisted deposition of mixed TiO2‐SiO2 films," Journal of Applied Physics, Vol. 66, No. 4, 1989, pp. 1805-1809.
[55] F. Werfel and O. Brümmer, "Corundum structure oxides studied by XPS," Physica Scripta, Vol. 28, No. 1, 1983, p. 92.
[56] S. O. Saied, J. L. Sullivan, T. Choudhury, and C. G. Pearce, "A comparison of ion and fast atom beam reduction in TiO2," Vacuum, Vol. 38, No. 8-10, 1988, pp. 917-922.
[57] W.-T. Yang, C. J. Lin, T. Montini, P. Fornasiero, S. Ya, and S. Y. H. J. J. o. H. M. Liou, "High-performance and long-term stability of mesoporous Cu-doped TiO2 microsphere for catalytic CO oxidation,"Journal of Hazardous Materials , Vol. 403, 2021, p. 123630.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-6-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明