參考文獻 |
[1] Chu, C. L. et al. “Stacked Ge-nanosheet GAAFETs fabricated by Ge/Si multilayer epitaxy”. IEEE Electron Device Lett. 39, 1133–1136. 2018. https:// doi. org/ 10. 1109/ LED. 2018. 28503 66
[2] Bera, L. K. et al. “Three dimensionally stacked SiGe nanowire array and gateall-around p-MOSFETs”. In IEDM 1–4 (San Francisco, 2006). https:// doi. org/ 10. 1109/ IEDM. (2006). 346841.
[3] Mochizuki, S. et al. “Stacked gate-all-around nanosheet pFET with highly compressive strained Si1-xGexchannel”. In IEDM 2.3.1–2.3.4 (San Francisco, 2020). https:// doi. org/ 10. 1109/ IEDM13553. 2020. 93720 41.
[4] K. Prabhakaran, F. Maeda, Y.Watanabe, and T. Ogino, Appl. Phys. Lett., 76, (2000), 2244.
[5] G. Gupta, “Carrier Transport in Dirac-Band Materials and their Device Physics”, 10.13140/RG.2.2.14293, (2015), 63206.
[6] S. Takagi, M. Noguchi, M. Kim, S. H. Kim, C. Y. Chang, M. Yokoy a, et al., “III-V/Ge MOS device technologies for low power integrated
systems”, Solid-State Electronics, vol. 125, (2016), 82.
[7] V. Pham P. “Atmospheric Pressure Chemical Vapor Deposition of Graphene. Chemical Vapor Deposition for Nanotechnology”. IntechOpen.2019. https:// doi.org/10.5772/intechopen.81293.
[8] 梁沐旺、林士欽、江源遠,“低壓化學氣相沉積應用技術”,機械工業雜誌363 期102 年6 月號,工業技術研究院機械所,2013。
[9] 陳松裕、林郁斌,“矽晶太陽電池之多晶矽鈍化層技術發展現況與趨勢分析”,經濟部能源署太陽光電技術平台建置及新材料應用開發計畫(3/3),工研院綠能所太陽光電技術組,2021。
[10] 張評款,“以射頻磁控濺鍍法沉積鋯鈦酸鋇薄膜於ITO 基板之研究”,國立中山大學電機工程學系研究所碩士論文,2006。
[11] L.Eckertova, T. Ruzicka, “Diagnostics and Applications of Thin Films”, Ch.1&2, Institute of Physics Publishing, 1993.
[12] 彭麟皓,“矽/矽鋯多層結構高溫氧化處理之材料與機械特性分析”,國立勤益科技大學機械工程學系研究所碩士論文,2011。
[13] R. People, “Indrect Band gap of coherently strained GexSi1-x bulk alloys on <001> silicon substrates”, Physical Review B, 32, (1985), 1405.
[14] C. G. Van de Walle and R. M. Martin, “Theoretical Calculations of heterojunction discontinuities in the Si/Ge system”, Physical Review B, 34 (1986), 5621.
[15] R. People and J. C. Bean, “Band alignments of coherently strained GexSi1-x/Si heterostructures on <001> GeySi1-y substrates”, Applied Physics Letters, 48, (1986), 538.
[16] A. Levitas, “Electrical properties of germanium-silicon alloys”, Physical Review, 99, (1955), 1810.
[17] M. Glicksman, “Mobility of electrons in germanium-silicon alloys”, Physical Review, 111, (1958), 125.
[18] J.A. Moriarty, S. Krishnamurthy, “Theory of silicon superlattices:Electronic structure and enhanced mobility”, Journal of Applied Physics, 54 (1983), 1892.
[19] G.C. Osboum, “Strained-layer superlattices : A brief review”, IEEE journal of quantum electronics, 22, (1986), 1677.
[20] D.L. Harame, et al., “Si/SiGe epitaxial-base transistor-part I : materials, phys and circuits”, IEEE transactions on electron devices, 42, (1995), 455.
[21] 陸新起,“矽鍺(SiGe)技術與應用”,2003.
[22] S.M. Gates, et al., “Decomposition of silane on Si(111)-(7×7) and Si(100)-(2×1) surfaces below 500°C”, The Journal chemical physics, 92, (1990), 3144.
[23] B. Cunningham, et al., “Heteroepitaxial growth of on (100) Si by ultrahigh vacuum, chemical vapor deposition”, Applied Physics Letters, 59, (1991),
3574.
[24] Z. Ma, et al., “A high-power and high-gain X-band Si/SiGe/Si heterojunction bipolar transistor”, IBEE transactions on microwave theory
and techniques, 50, (2002), 1101.
[25] K. Rim, et al., “Fabrication and mobility characteristics of ultra thin strained-Si directly on insulator (SSDOI) MOSFETs”, in IEDM Tech. Dig., San Francisco, CA, (2003), 3.1.1.
[26] C.W. Leitz, et al., “Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal oxidesemiconductor field-effect transistors”, Journal of Applied Physics, 92, (1993), 3745.
[27] S. Y. Tan, microelec. j., 38 (2007), 783.
[28] B. Y. Chen, J. L. Chen, C. L. Chu, G. L. Luo, S. Lee and E. Y. Chang, “Ge/IIIV Fin Field-Effect Transistor Common Gate Process and Numerical Simulations," Journal of Micro/Nanolithography”, MEMS, and MOEMS, 16(2), (2017), 024501.
[29] J. Robertson, P.W. Peacock, M. Houssa (Ed.), “High-κ Gate Dielectrics”, IOP, London (2003), 372.
[30] G. D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys., 89, (2001), 5243.
[31] S. Swaminathan, M. Shandalov, Y. Oshima, and P. C. Mclntyre, Appl. Phys. Lett., 96 (2010), 082904.
[32] C. Rossel, A. Dimoulas, A. Tapponnier, D. Caimi, D. J. Webb, C. Andersson, M. Sousa, C. Marchiori, H. Siegwart, and R. Germann, Proceedings of the 38th European Solid-State Device Research Conference “ESSDERC 2008”, Edinburgh, UK, 15–19 September 2008 (IEEE, New York, 2008), 79-82.
[33] D. G. Schlom and J. H Haeni, MRS Bulletin, 27, (2002), 198.
[34] G. Mavrou, S. F. Galata, A. Sotiropoulos, P. Tsipas, Y. Panayiotatos , A. Dimoulas, E. K. Evangelou, J.W. Seo, and C. h. Dieker, Microelectron Eng., 84, (2007), 2324.
[35] I. H. Ohmi, S. Akama, S. Ohshima, C. Kikuchi, A. Kashiwagi, I. Taguchi, J. Yamamoto, H. Tonotani, J. Kim, Y. Ueda, I. Kuriyama, A. Yoshihara, Electron Devices Meeting, International, 8-11, (2002), 625.
[36] J. R. Hauser, Tech. Dig. Int. Electron Device Meeting, IEEE, Piscataway, NJ, (1999).
[37] A. P. Kerasidou, M. A. Botzakaki, N. Xanthopoulos, S. Kennou, S. Ladas, S. N. Georga, and C. A. Krontiras, J. Vac. Sci. Technil. A, 31, (2013), 01A126.
[38] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia,
“High ε gate dielectrics Gd2O3 and Y2O3 for silicon”, Appl. Phys. Lett., vol. 77, No. 1, 3 July 2000.
[39] B. W. Busch, J. Kwo, M. Hong, J. P. Mannaerts, and B. J. Sapjeta, “Interface reactions of high-k Y2O3 gate oxides with Si”, Appl. Phys.
Lett., 79, No. 15, 8 October 2001.
[40] J. Kwo. M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, “Properties of high k gate dielectrics Gd2O3 and Y2O3 for Si”, J. Appl. Phys., 89, No. 7, 1 April 2001.
[41] T. S. Lay, Y. Y. Liao, W. D. Liu, Y. H. Lai, W. H. Hung, J. Kwo, M. Hong, and J. P. Mannaerts, “Electrical and interfacial studies on high-k Y2O3/Si structure”, Proceedings of 2002 IEDMS, 106.
[42] C. Liao, X. Zou, C. W. Huang, J. Wang, K. Zhang, Y. Kong, T. Chen,W. W. Wu, X. Xiao, C. Jiang, and L. Liao, IEEE Electron Device Lett. 36, (2015), 1284.
[43] Y. C. Lin, H. D. Trinh, T. W. Chuang, H. Iwai, K. Kakushima, P. Ahmet, C. H. Lin, C. H. Diaz, H. C. Chang, S. M. Jang, and E. Y. Chang, IEEE Electron Device Lett. 34, (2013), 1229.
[44] W. H. Wu, Y. C. Lin, T. W. Chuang, Y. C. Chen, T. C. Hou, J. N. Yao, P. C. Chang, H. Iwai, K. Kakushima, and E. Y. Chang, Appl. Phys. Express 7 (2014), 031201
[45] P. Tsipas, S. N. Volkos, A. Sotiropoulos, S. F. Galata, G. Mavrou, D. Tsoutsou, Y. Panayiotatos, A. Dimoulas, C. Marchiori, and J. Fompeyrine, Appl. Phys. Lett, 93, (2008), 082904.
[46] Olufunsho Oladipo Olotu, Rigardt Alfred Maarten Coetzee, Peter Apata Olubambi, Tien-Chien Jen, “Operating pressure influences over micro trenches in exposure time introduced atomic layer deposition”, International Journal of Heat and Mass Transfer, vol. 153, (2020),119602.
[47] 柯志忠、林秀芬、蕭健男,“原子層沉積系統設計概念與應用”, 科儀新知第二十九卷第一期,台灣儀器科技研究中心,2007。
[48] R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition, 9, (2003), 73.
[49] Debra Vogler and Paula Doe, Sol. State Technol., 46, (2003), 35.
[50] D. A. Neamen, “Semiconductor Physics and Device”, Second Edition, McGraw-Hill, New York, (2003), 469~471.
[51] Operational Manual, Epsilon 2000 Single Wifer Epitaxial Reac-tor, ASM.
[52] Capogreco, E. et al. “High performance strained germanium gate all around p-channel devices with excellent electrostatic control for sub-Jtlnm LG”. In Dig. Tech. Pap. - Symp. VLSI Technol. T94–T95 (Kyoto, Japan, 2019).https:// doi. org/ 10. 23919/ VLSIT. 2019.
[53] J. L. Chen, Y.K. Fuh, and C.L. Chu, “Effects of Etching Variations on Ge/Si Channel Formation and Device Performance”, Nanoscale Res Lett 13, (2018), 226. https://doi.org/10.1186/s11671-018-2631-1 |