博碩士論文 110323080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.138.172.222
姓名 張家豪(Chia-Hao Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於積層製造技術之醫用穿戴裝置軟性印刷電路板製程設計與應用開發
(Process Design and Application Development of Flexible Printed Circuit Boards for Medical Wearable Devices Based on Additive Manufacturing Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 醫療穿戴式裝置可以擷取、生成及分享穿戴者的生理數據,使醫護人員可以透過數位連線方式,為患者進行遠距診斷與治療。醫療穿戴式裝置中最重要的部分是軟性印刷電路板,具有重量輕、厚度薄及體積小等優點。目前主流的製造技術較適合用於單一規格的大量製造應用中,但醫療穿戴式裝置需要根據患者的不同需求進行客製化,若使用主流的製造技術進行客製化生產,會使成本增加許多。積層製造技術是一種層層堆疊成型的製造技術,可以製作出複雜的三維結構,也可以在模型內部設計結構。由於此技術具有高度的設計自由度,可以滿足醫療穿戴式裝置的客製化需求。
本研究以積層製造技術為基礎,開發具可撓性、親膚性及可客製化的軟性印刷電路板製程,為醫療穿戴式裝置的客製化應用需求提供一種解決方法。本研究選擇使用積層製造技術中具有極高解析度的光固化成型技術製作軟性基板,並將設計的電路圖案也列印於基板上。接著以直接墨水書寫技術列印導電墨水,將導電墨水固化後形成導電電路。根據表面貼裝技術開發一套電子元件貼裝方法,最後再以直接墨水書寫技術列印軟性封裝材料於成品表面,封裝材料固化後形成封裝層,避免電路與電子元件受到外部環境的影響,延長成品的使用壽命並提高其可靠性。
完成上述製程後,本研究以傷口護理的醫療穿戴式裝置為範例,設計兩款傷口護理的應用模組,分別為具有加速傷口癒合效果的多光譜光療模組,以及具有傷口癒合監測效果的生物阻抗量測模組。以開發的製程製作模組成品後,進行通電後的功能測試、機械性質測試、在不同彎曲狀態下的電路穩定性及運作時的表面溫度穩定性等實驗,驗證模組的可行性。
摘要(英) Medical wearable devices can retrieve, generate and share the wearer’s physiological data, enabling medical personnel to provide remote diagnosis and treatment to patients through digital connections. The most important part of medical wearable devices is the flexible printed circuit boards, which has the advantages of being lightweight, thin and small. Current mainstream manufacturing technologies are more suitable for mass manufacturing of single specification applications. However, medical wearable devices need to be customized according to the different needs of patients. Using mainstream manufacturing technologies for customized production would significantly increase costs. Additive manufacturing technology, which builds layer by layer, can create complex three-dimensional structures and design internal structures within models. Due to its high degree of design freedom, this technology can meet the customization needs of medical wearable devices.
This research is based on additive manufacturing technology to develop a flexible, skin-friendly and customizable flexible printed circuit boards process, providing a solution for the customized application needs of medical wearable devices. The study utilizes high-resolution photopolymerization technology in additive manufacturing technology to produce flexible substrates and prints the designed circuit patterns onto the substrates. Next, conductive ink is printed using direct ink writing technology, which is then cured to form conductive circuits. A method for mounting electronic components is developed based on surface mount technology. Finally, flexible encapsulation material is printed onto the surface of the product using direct ink writing technology. After the encapsulation material is cured, it forms an encapsulation layer that protects the circuit and electronic components from external environmental influences, thereby extending the product′s lifespan and enhancing its reliability.
After completing the aforementioned process, this research uses the medical wearable device for wound care as an example to design two application modules for wound care: a multispectral phototherapy module that accelerates wound healing and a bioimpedance measurement module that monitors wound healing. The modules are fabricated using the developed process, followed by functional testing under power, mechanical property testing, circuit stability testing under different bending conditions, and surface temperature stability testing during operation to verify the feasibility of the modules.
關鍵字(中) ★ 積層製造
★ 軟性印刷電路板
★ 醫療穿戴式裝置
關鍵字(英) ★ Additive Manufacturing
★ Flexible Printed Circuit Board
★ Medical Wearable Devices
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 15
1-4 論文架構 16
第二章 研究與理論說明 17
2-1 印刷電路板簡介 17
2-2 直接墨水書寫技術簡介 22
2-3 光固化成型技術簡介 24
2-4 數位影像處理與機器視覺技術簡介 26
2-5 應用於慢性傷口護理的醫療穿戴式裝置 33
第三章 系統架構與製程說明 39
3-1 軟性印刷電路板的製造流程 39
3-2 系統設備簡介 47
3-3 使用材料簡介 51
3-4 機器系統與視覺系統的手眼校正方法 56
3-5 導電墨水沉積路徑規劃方法 61
3-6 電子元件貼裝路徑規劃方法 78
3-7 封裝材料沉積路徑說明 81
第四章 傷口護理的應用模組開發 82
4-1 傷口護理的應用模組設計 82
4-2 多光譜光療模組功能測試方法 90
4-3 生物阻抗量測模組功能測試方法 91
4-4 基板材料與封裝材料的拉伸試驗 94
4-5 不同曲率半徑下的電路穩定性測試方法 96
4-6 多光譜光療模組的表面溫度穩定性測試方法 98
第五章 實驗結果與討論 100
5-1 導電墨水沉積路徑規劃之列印結果 100
5-2 電子元件貼裝路徑規劃之準確性測試結果 102
5-3 多光譜光療模組功能測試結果 104
5-4 生物阻抗量測模組功能測試結果 105
5-5 多光譜光療模組與生物阻抗量測模組的組合使用 108
5-6 基板材料與封裝材料的拉伸試驗結果 109
5-7 不同曲率半徑下的電路穩定性測試結果 110
5-8 多光譜光療模組的表面溫度穩定性試驗結果 113
第六章 結論與未來展望 117
6-1 結論 117
6-2 未來展望 117
參考文獻 118
參考文獻 [1]D. Cho, J. Kim, P. Jeong, W. Shim, S. Y. Lee, Y. Choi, S. Jung, “Highly Integrated Elastic Island-Structured Printed Circuit Board with Controlled Young’s Modulus for Stretchable Electronics”, Micromachines, vol. 11, 617, 2020.
[2]A. D. Valentine, T. A. Busbee, J. W. Boley, J. R. Raney, A. Chortos, A. Kotikian, J. D. Berrigan, M. F. Durstock, and J. A. Lewis, “Hybrid 3D Printing of Soft Electronics”, Advanced Materials, vol. 29, 1703817, 2017.
[3]Y. Dong, X. Min, and W. S. Kim, “A 3-D-Printed Integrated PCB-Based Electrochemical Sensor System”, IEEE Sensors Journal, vol. 18, pp. 2959-2966, 2018.
[4]H. Nassar, and R. Dahiya, “Fused Deposition Modeling-Based 3D-Printed Electrical Interconnects and Circuits”, Advanced Intelligent Systems, vol. 3, 2100102, 2021.
[5]D. J. Roach, C. M. Hamel, C. K. Dunn, M. V. Johnson, X. Kuang, and H. J. Qi, “The m4 3D Printer: A multi-material Multi-method Additive Manufacturing Platform for Future 3D Printed Structures”, Additive Manufacturing, vol. 29, 100819, 2019.
[6]X. R. Peng, X. Kuang, D. J. Roach, Y. Q. Wang, C. M. Hamel, C. L. Lu, and H. J. Qi, “Integrating Digital Light Processing with Direct Ink Writing for Hybrid 3D Printing of Functional Structures and Devices”, Additive Manufacturing, vol. 40, 101911, 2021.
[7]R. Lin, Y. Li, X. Mao, W. Zhou, R. Liu, “Hybrid 3D Printing All-in-One Heterogenous Rigidity Assemblies for Soft Electronics”, Advanced Materials Technologies, vol. 4, 1900614, 2019.
[8]Y. Jeon, H. R. Choi, M. Lim, S. Choi, H. Kim, J. H. Kwon, K. C. Park, and K. C. Choi, “A Wearable Photobiomodulation Patch Using a Flexible Red-Wavelength OLED and Its In Vitro Differential Cell Proliferation Effects”, Advanced Materials Technologies, vol. 3, 1700391, 2018.
[9]X. T. Zheng, Z. J. Yang, L. Sutarlie, M. Thangaveloo, Y. Yu, N. Salleh, J. S. Chin, Z. Xiong, D. L. Becker, X. J. Loh, B. C. K. Tee, and X. D. Su, “Battery-free and AI-enabled Multiplexed Sensor Patches for Wound Monitoring”, Science Advances, vol. 9, 2023.
[10]X. C. Pei, H. Jin, S. R. Dong, D. Lou, L. Ma, X. G. Wang, W. W. Cheng, and H. Wong, “Flexible Wireless Skin Impedance Sensing System for Wound Healing Assessment”, Vacuum, vol. 168, 108808, 2019.
[11]A. Kekonen, M. Bergelin, J. E. Eriksson, A. Vaalasti, H. Ylanen, S. Kielosto, and J. Viik, “Bioimpedance method for monitoring venous ulcers: Clinical proof-of-concept study”, Biosensors & Bioelectronics, vol. 178, 112974, 2021.
[12]David Kallweit, ”Flex LED Based Smart Light System for Healing of Chronic Wounds”, https://www.led-professional.com/resources-1/articles/flex-led-based-smart-light-system-for-healing-of-chronic-wounds.
[13]Y. W. Jiang, A. A. Trotsyuk, S. M. Niu, D. Henn, K. Chen, C. C. Shih, M. R. Larson, A. M. Mermin-Bunnell, S. Mittal, J. C. Lai, A. Saberi, E. Beard, S. Jing, D. L. Zhong, S. R. Steele, K. F. Sun, T. Jain, E. Zhao, C. R. Neimeth, W. G. Viana, J. Tang, D. Sivaraj, J. Padmanabhan, M. Rodrigues, D. P. Perrault, A. Chattopadhyay, Z. N. Maan, M. C. Leeolou, C. A. Bonham, S. H. Kwon, H. C. Kussie, K. S. Fischer, G. Gurusankar, K. Liang, K. L. Zhang, R. Nag, M. P. Snyder, M. Januszyk, G. C. Gurtner, and Z. N. Bao, “Wireless, Closed-loop, Smart Bandage with Integrated Sensors and Stimulators for Advanced Wound Care and Accelerated Healing”, Nature Biotechnology, vol. 41, pp. 652, 2023.
[14]C. Lee, S. Kim, M. Jo, J. Lee, “Residual Interfacial Deformation in Flexible Copper Clad Laminate Occurring During Roll‑to‑Roll Composite Film Manufacturing”, International Journal of Precision Engineering and Manufacturing-Green Technology, pp. 805-815, 2021.
[15]E. Romanczuk-Ruszuk, B. Sztorch, D. Pakula, E. Gabriel, K. Nowak, R. Przekop, “3D Printing Ceramics-Materials for Direct Extrusion Process”, Ceramics, vol. 6, pp. 364-385, 2023.
[16]H. Yuk, and X. H. Zhao, “A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks”, Advanced Materials, vol. 30, 1704028, 2018.
[17]鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪家昌、蔡明忠、賴維祥、賴逸琳、洪基彬、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞、陳宇恩,「3D列印:積層製造技術與應用」,全華圖書股份有限公司,2018年。
[18]L. Schittecatte, V. Geertsen, D. Bonamy, T. Nguyen, and P. Guenoun, “From Resin Formulation and Process Parameters to the Final Mechanical Properties of 3D Printed Acrylate Materials”, MRS Communications, vol. 13, pp. 357-377, 2023.
[19]張元翔,「數位影像處理:Python程式實作」,全華圖書股份有限公司,2022年。
[20]陳兵旗,「機器視覺技術」,松燁文化事業有限公司,2022年。
[21]W. Lin, P. Liang, G. Luo, Z. Zhao, C. Zhang, “Research of Online Hand–Eye Calibration Method Based on ChArUco Board”, Sensors, vol. 22, 3805, 2022.
[22]E. M. Tottoli, R. Dorati, I. Genta, E. Chiesa, S. Pisani, and B. Conti, “Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration”, Pharmaceutics, vol. 12, 735, 2020.
[23]T. Maeda, C. Masaki, M. Kanao, Y. Kondo, A. Ohta, T. Nakamoto, and R. Hosokawa, “Low-intensity Pulsed Ultrasound Enhances Palatal Mucosa Wound Healing in Rats”, Journal of Prosthodontic Research, vol. 57, pp. 93-98, 2013.
[24]C. Yu, Z. X. Xu, Y. H. Hao, Y. B. Gao, B. W. Yao, J. Zhang, B. Wang, Z. Q. Hu, and R. Y. Peng, “A Novel Microcurrent Dressing for Wound Healing in a Rat Skin Defect Model”, Military Medical Research, vol. 6, 22, 2019.
[25]S. Rohringer, W. Holnthoner, S. Chaudary, P. Slezak, E. Priglinger, M. Strassl, K. Pill, S. Mühleder, H. Redl, and P. Dungel, “The Impact of Wavelengths of LED Light-therapy on Endothelial Cells”, Scientific Reports, vol. 7, 10700, 2017.
[26]R. Saggini, A. Figus, A. Troccola, V. Cocco, A. Saggini, and N. Scuderi, “Extracorporeal Shock Wave Therapy for Management of Chronic Ulcers in the Lower Extremities”, Ultrasound in Medicine and Biology, vol. 34, pp. 1261-1271, 2008.
[27]J. Hunckler, and A. de Mel, “A Current Affair: Electrotherapy in Wound Healing”, Journal of Multidisciplinary Healthcare, vol. 10, 2017.
[28]S. Ud-Din, and A. Bayat, “Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence”, Healthcare, vol. 2, pp. 445-467, 2014.
[29]A. Cios, M. Ciepielak, L. Szymanski, A. Lewicka, S. Cierniak, W. Stankiewicz, M. Mendrycka, and S. Lewicki, “Effect of Different Wavelengths of Laser Irradiation on the Skin Cells”, vol. 22, 2437, 2021.
[30]T. P. Prado, F. C. Zanchetta, B. Barbieri, C. Aparecido, M. H. M. Lima, E. P. Araujo, “Photobiomodulation with Blue Light on Wound Healing: A Scoping Review”, Life, vol. 13, 575, 2023.
[31]陳柏任,「組織工程應用之平面與旋轉兩用式三維生物列印機開發」,國立中央大學,碩士論文,民國111年。
[32]OpenCV官方網站,https://opencv.org/。
[33]OpenCVSharp GitHub網站,https://github.com/shimat/opencvsharp。
[34]L. Piegl, W. Tiller, “The NURBS Book”, Springer-Nature, 2012.
[35]Liu, K. Chen, H. D. Wang, Y. G. Wang, and M. Q. Tang, J. “Wearable Flexible Phototherapy Device for Knee Osteoarthritis”, Electronics, vol. 10, 1891, 2021.
[36]A. Kekonen, M. Bergelin, M. Johansson, N. K. Joon, J. Bobacka, J. Viik, “Bioimpedance Sensor Array for Long-Term Monitoring of Wound Healing from Beneath the Primary Dressings and Controlled Formation of H2O2 Using Low-Intensity Direct Current”, Sensors, vol. 19, 2505, 2019.
[37]J. G. Webster, A. J. Nimunkar, “Medical Instrumentation: Application and Design”, Wiley, 2020.
[38]D. J. Bora, R. Dasgupta, “Estimation of Skin Impedance Models with Experimental Data and a Proposed Model for Human Skin Impedance”, IET Systems Biology, vol. 14, pp. 230-240, 2020.
[39]H. R. Elden, “Biophysical Properties of the Skin”, Wiley, 1971.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2024-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明