博碩士論文 111323120 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:3.137.171.147
姓名 吳弈翰(Yi-Han Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 IC CAD模型之混合結構化與非結構化四邊形網格自動建構技術發展
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因應近年來電子產品的發展方向朝著高性能及輕量化,IC晶片也隨之縮小,故IC設計技術面臨的挑戰越發艱難。在IC封裝設計階段,透過模流分析有助於進行預先評估及尋求最佳化方案。然而,進行模流分析前,需先將CAD模型轉換為實體網格,並利用求解器(Solver)進行計算。實體網格種類中,六面體網格(Hexahedron)雖然品質最佳,但自動化建構難度較高,通常需人工處理。由於六面體網格是以四邊形表面網格(Surface Mesh)構成,因此四邊形表面網格建構方法成為未來發展的重要課題。本研究旨在發展混合結構化與非結構化四邊形網格自動建構技術,將IC模型分割為多個區域,並結合自動化網格建構技術,根據模型內部精度的需求,可選用合適的網格尺寸和類型,提高IC模型模流分析的精確度和效率。本研究對網格建構方法的調整,除了修改自動化區域劃分(Automated Partition)中,區域資料關係的建立方式外,也排除不同種類網格未接齊的問題,整體上增加該方法的穩定性,使其可在大部分的IC CAD模型上順利搭建四邊形表面網格,並由網格建構及模流分析結果發現,各種網格建構方法均有優缺點,而混合型網格在整體品質和模流分析效率上取得較佳平衡,進一步說明本研究所提方法的可行性。
摘要(英) In response to the trend of high performance and lightweight design in electronic products in recent years. IC chips have also been shrinking. Posing increasingly difficult challenges for IC design technology. During the IC packaging design phase, mold flow analysis helps to conduct preliminary evaluations and find optimization solutions. Before conducting mold flow analysis, CAD models must be converted into physical meshes, and calculations need to be performed using a solver. Among the various types of physical meshes, hexahedral meshes are known for their superior quality. However, automated construction is more challenging and typically requires manual processing. Since hexahedral meshes are composed of quadrilateral surface meshes, the construction method of quadrilateral surface meshes has become an important topic for future development. This study aims to develop a technology for automatically constructing mixed structured and unstructured quadrilateral meshes, dividing IC models into multiple regions, and combining automated mesh construction techniques. Depending on the accuracy requirements of the model, appropriate mesh sizes and types can be selected to enhance the accuracy and efficiency of the IC model flow analysis. In addition to adjusting the mesh construction method, this study enhances the stability of the approach by modifying the establishment of relationships in automated region partition and addressing issues related to incomplete connections of different types of meshes. This allows for the successful construction of quadrilateral surface meshes on most IC CAD models. Through mesh construction and flow analysis results, it is found that various mesh construction methods have their own advantages and disadvantages. The hybrid mesh achieves a better balance in overall quality and flow analysis efficiency. This further demonstrates the feasibility of the method proposed in this study.
關鍵字(中) ★ IC 封裝
★ 自動化區域劃分
★ 四邊形網格建構
★ 模流分析
關鍵字(英) ★ IC Packaging
★ Automated Region Partitioning
★ Quadrilateral Mesh Generation
★ Mold Flow Analysis
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 7
1.4 研究方法 8
1.5 論文架構 9
第二章 混合結構與非結構化網格建構方法回顧 11
2.1 前言 11
2.2 四邊形網格介紹 11
2.3自動化區域劃分及四邊形網格建構方法說明 15
2.3.1 自動化區域劃分名詞定義 15
2.3.2 自動化區域劃分方法說明 21
2.3.3 四邊形網格建構方法說明 29
2.4 問題分析 29
第三章 四邊形網格建構方法修改 35
3.1 前言 35
3.2 四邊形網格建構整體流程說明 35
3.3 改善區域資料關係性的建立 37
3.3.1 不同區域之邊界共線檢查 39
3.3.2 建立新區域邊界 41
3.4 提升網格建構方法之穩定性 41
3.4.1 建立內輪廓框架 43
3.4.2 建立區域資料 46
3.5 修改結果分析 50
第四章 四邊形網格建構結果分析 59
4.1 前言 59
4.2 網格品質及模流分析說明 63
4.2.1 網格品質說明 63
4.2.2 模流分析指標說明 67
4.3 結構化網格建構結果與模流分析 70
4.4 網格類型影響模流分析之趨勢 99
第五章 結論與未來展望 120
5.1 結論 120
5.2 未來展望 121
參考文獻 123
參考文獻 [1] H. J. Fogg, C. G. Armstrong and T. T. Robinson, “Automatic generation of multiblock decompositions of surfaces,” International Journal for Numerical Methods in Engineering, Vol. 101, No. 13, pp. 965-991, 2015.
[2] H. J. Fogg, C. G. Armstrong and T. T. Robinson, “Enhanced medial-axis-based block-structured meshing in 2-D,” Computer-Aided Design Vol. 72, pp. 87-101, 2016.
[3] H. J. Fogg, C. G. Armstrong and T. T. Robinson, “Multi-block decomposition using cross-fields,” International Conference on Adaptive Modeling and Simulation, pp.254-267, Lisbon, Portugal, June. 3-5, 2013.
[4] L. Sun, C. G. Armstrong, T. T. Robinson and D. Papadimitrakis, “Quadrilateral multiblock decomposition via auxiliary subdivision,” Journal of Computational Design and Engineering, Vol. 8, No. 3, pp. 871-893, 2021.
[5] J. Jezdimirovic, A. Chemin and J. F. Remacle, “Multi-block decomposition and meshing of 2D domain using Ginzburg-Landau PDE,” 28th International Meshing Roundtable, pp. 402-418, 2019.
[6] N. Kowalski, F. Ledoux and P. Frey, “A PDE based approach to multidomain partitioning and quadrilateral meshing,” Proceedings of the 21st Meshing Roundtable, pp. 137-154, 2013.
[7] Y. X. Zhang, Y. F. Jia, S. Y. Wang, and M. Altinakar “Composite structured mesh generation with automatic domain decomposition in complex geometries,” Engineering Applications of Computational Fluid Mechanics, Vol. 7, No. 1, pp. 90-102, 2013.
[8] A. Rushdi, S. A. Mitchell, A. H. Mahmoud, C. C. Bajaj and M. S. Ebeida “All-quad meshing without cleanup,” Computer-Aided Design Vol. 85, pp. 83-98, 2017.
[9] Z. Ali, J. Tyacke, P. G. Tucker and S. Shahpar, “Block topology generation for structured multi-block meshing with hierarchical geometry handling,” Procedia Engineering, Vol. 163, pp. 212-224, 2016.
[10] C. G. Armstrong, H. J. Fogg, C. M. Tierney and T. T. Robinson, “Common themes in multi-block structured quad/hex mesh generation,” Procedia Engineering, Vol. 124, pp. 70-82, 2015.
[11] 戴宇辰,「混合結構化與非結構化四邊形網格之自動化區域劃分方法發展」,國立中央大學碩士論文,2023.
[12] J. Y. Lai, P. Putrayudanto, D. H. Chen, J. H. Huang, P. P. Song and Y. C. Tsai, “An enhanced paving algorithm for automatic quadratic generation of IC CAD models,” The 9th IEEE International Conference on Applied System Innovation, Tokyo, Japan, Apr. 21-25, 2023.
[13] J. Y. Lai, J. S. Su, S. C. Tseng, H. J. Liou, S. J. Jheng, J. Huang, P. P. Song and Y. C. Tsai, “Quality Improvement for an Automatic Quadratic Mesh Generation Method for IC CAD Models,” 2024 International Conference on Machining, Materials and Mechanical Technologies, Phan Thiet, Viet Nam, Sep. 11-15, 2024.
[14] T. A. Burkhart, D. M. Andrews and C.E.Dunning, “Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue,” Journal of Biomechanics, Vol. 46, No. 9, pp.1477-1488, 2013.
[15] B-rep Data Structure. Avaliable: https://developer.rhino3d.com/guides/cpp/brep-data-structure. [Accessed Sep. 12, 2023].
[16] Rhinoceros. Avaliable: https://www.rhino3d.com. [Accessed Sep 12, 2023].
[17] OpenNURBS. Avaliable: https://www.rhino3d.com/tw/features/developer/opennurbs. [Accessed Sep. 12, 2023].
[18] Moldex3D Help 2022. Available: https://support.moldex3d.com/202-2/zh-TW/2-1_moldex3dstudio.html. [Accessed Apr. 22, 2024].
[19] 鍾文仁與陳佑任,IC封裝製程與CAE應用,全華圖書,2021。
[20] 梁秉傑,「不同網格類型對於IC CAD模型模流分析之影響探討」,國立中央大學碩士論文,2024.
[21] 王齊,「四邊形網格自動建構之多尺寸輪廓撒點技術研究」,國立中央大學碩士論文,2024.
[22] 李奇勳,「非結構化四邊形網格自動建構研究」,國立中央大學碩士論文,2024.
[23] 蔡敬崙,「四邊形網格自動建構之網格品質改善研究」,國立中央大學碩士論文,2024.
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明