博碩士論文 111323055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.138.172.222
姓名 黃義程(Yi-Cheng Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微量摻雜硼對輕量六元TiAlCrNbVNi中熵合金微結構改良與機械性質提升之研究
(Microstructure modification and mechanical properties improvement of senary-element TiAlCrNbVNi medium-entropy alloy by microdoping with boron)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-31以後開放)
摘要(中) 有別於傳統合金,輕量化高熵合金因合金設計造成的低密度與優良機械性質等特質,於航空太空其他工業領域吸引大量的研究與投入。本研究主要探討多元非等量中熵合金的成分設計,基於先前所開發之Ti65(AlCrNbV)34Ni1輕量化富鈦中熵合金,藉由微量摻雜硼元素的方式製備成(Ti65(AlCrNbV)34Ni1)100-xBx(X=0.05, 0.1, 0.2, 0.3)系列合金,將合金密度控制在5 g/cm3¬並分析硼元素摻雜對合金機械性質與微結構之影響,將合金的強度與延性進一步提升。
本研究利用電弧融煉法製備輕量化富鈦中熵合金,由於硼元素之原子半徑明顯小於合金內其他元素,分析X-ray繞射圖可以觀察到,隨著硼元素摻雜量提高,繞射峰有靠右偏移的趨勢。透過光學顯微鏡可以發現各組合金有析出物於晶界上產生,並使合金之硬度由(Ti65(AlCrNbV)34Ni1)99.95B0.05的341 Hv提升至(Ti65(AlCrNbV)34Ni1)99.7B0.3的365 Hv,當合金經均質化處理後,其機械性質由(Ti65(AlCrNbV)34Ni1)99.95B0.05的1022 MPa降伏強度,提升至(Ti65(AlCrNbV)34Ni1)99.7B0.3的1122MPa 降伏強度但延性則從26.8%降低至11.9%。
接著將(Ti65(AlCrNbV)34Ni1)99.95B0.05進行熱機處理進一步改善性能,其硬度與強度隨著退火溫度的提高而降低,原因是合金經滾軋後累積之應變能隨著退火溫度的提高,而釋放的越多,在未進行再結晶退火熱處理的合金降伏強度1559MPa,延性僅有8.6%,在再結晶退火溫度889°C時,在金相圖中可以觀察到有部分再結晶於晶界上產生,其降伏強度降至1147MPa,延性則提升至24.3%,綜合比較再結晶熱處理退火參數,可以得到再結晶退火熱處理溫度為817°C時,(Ti65(AlCrNbV)34Ni1)99.95B0.05具有最佳的綜合性能,其降伏強度為1289 MPa,延性為15.4%。
摘要(英) Unlike traditional alloys, lightweight high-entropy alloys have attracted significant research and investment in the aerospace and other industrial fields due to their low density and excellent mechanical properties resulting from alloy design. This study primarily investigates the composition design of multicomponent non-equiatomic medium-entropy alloys. Based on the previously developed Ti65(AlCrNbV)34Ni1 lightweight titanium-rich medium-entropy alloy, we prepared a series of alloys by microalloying with boron in the forms of (Ti65(AlCrNbV)34Ni1)100-xBx (X=0.05, 0.1, 0.2, 0.3). Keeping the alloy density at around 5 g/cm³, we analyze the effects of boron doping on the mechanical properties and microstructure of the alloy and aim to further enhance the alloy strength and ductility.
In this study, lightweight titanium-rich medium-entropy alloys were prepared using arc melting. X-ray diffraction analysis showed that as the amount of boron doping increases, the diffraction peaks tend to shift to the right due to the significantly smaller atomic radius of boron compared with other elements in the alloy. Optical microscopy revealed that precipitates form at the grain boundaries in each alloy composition, resulting in an increase in hardness from 341 Hv for (Ti65(AlCrNbV)34Ni1)99.95B0.05 to 365 Hv for (Ti65(AlCrNbV)34Ni1)99.7B0.3.The mechanical properties improved after homogenization treatment, with the yield strength increasing from 1022 MPa for (Ti65(AlCrNbV)34Ni1)99.95B0.05 to a yield strength of 1122 MPa for (Ti65(AlCrNbV)34Ni1)99.7B0.3, But the ductility decreasing from 26.8% to 11.9%.
(Ti65(AlCrNbV)34Ni1)99.95B0.05 was then chosen for further improving mechanical properties via thermomechanical treatment. The hardness and strength decrease with increasing annealing temperature because the stored strain energy from rolling is progressively released as the annealing temperature increase. The alloy has a yield strength of 1559 MPa and ductility of 8.6% before recrystallization annealing. After undergoing recrystallization annealing at 889°C, partial recrystallization at the grain boundaries can be observed in the SEM image. Meanwhile, the yield strength reduces to 1147MPa and ductility increases to 24.3%. After comparing the annealing parameters for recrystallization heat treatment, it was found that (Ti65(AlCrNbV)34Ni1)99.95B0.05 exhibited the best synergy of mechanical property after 817°C recrystallization annealing, with a yield strength of 1289 MPa and a ductility of 15.4%.
關鍵字(中) ★ 輕量化中熵合金
★ 非等原子比
★ 微量元素摻雜
★ 熱機處理
關鍵字(英) ★ lightweight medium-entropy alloys
★ non-equiatomic ratio
★ microalloying
★ thermomechanical treatment
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究目的 1
第二章 文獻回顧 3
2-1 高熵合金之發展及定義 3
2-2 高熵合金之固溶相形成條件 4
2-3 高熵合金四大效應 6
2-3-1 高熵效應(High-Entropy Effect) 6
2-3-2 晶格扭曲效應(Severe-Lattice-Distortion Effect) 7
2-3-3 延遲擴散效應(Sluggish Diffusion Effect) 8
2-3-4 雞尾酒效應(Cocktail Effect) 8
2-4 高熵合金成分設計之衍生 9
2-4-1 非等量高熵合金 9
2-4-2 輕量化中熵合金 10
2-4-3 中熵合金之發展 11
2-5 影響機械性質之機制 11
2-5-1 固溶強化 11
2-5-2 晶界強化 12
2-5-3 析出硬化 13
2-5-4 異構組織強化 14
2-5-5 熱機處理 15
第三章 實驗方法與步驟 26
3-1 合金成分元素選擇 26
3-2 中熵合金試片製備 26
3-2-1 合金成分配製 26
3-2-2 電弧熔煉(Arc melting) 26
3-2-3 中熵合金板材製作-墜落式鑄造(drop casting) 27
3-2-4 均質化熱處理 27
3-2-5 熱滾軋 27
3-2-6 冷滾軋 28
3-2-7 再結晶退火熱處理 28
3-3 中熵合金密度分析 28
3-4 微觀組織分析 29
3-4-1 X光繞射分析儀(XRD) 29
3-4-2 光學顯微鏡(Optical Microscopy, OM) 29
3-4-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 30
3-4-4 能量散射光譜儀(Energy-dispersive X-ray spectroscopy, EDS) 30
3-4-5 電子背向散射繞射分析儀(Electron Back Scatter Diffraction, EBSD) 30
3-5 熱示差掃描熱量分析(Differential scanning calorimetry, DSC) 31
3-6 機械性質測試 31
3-6-1 維式硬度測試 31
3-6-2 拉伸測試分析 31
第四章 結果與討論 48
4-1 富鈦中熵合金成分設計 48
4-1-1 硼元素含量參雜選定 48
4-1-2 固溶相之參數計算 48
4-1-3 合金密度分析 49
4-2 富鈦中熵合金鑄態性質分析 49
4-2-1 熱性質分析 49
4-2-2 X-ray 繞射分析 49
4-2-3 微觀組織分析 50
4-2-4 機械性質分析 51
4-3 富鈦中熵合金之熱處理 51
4-3-1 滾軋試片形貌與退火溫度選定 52
4-3-2 X-ray 繞射分析 52
4-3-3 微觀組織分析 53
4-3-4 機械性質分析 54
4-3-5 熱機處理之微結構與機制探討 54
第五章 結論 72
第六章 參考文獻 73
參考文獻 [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299- 303.
[2] W.Y. Tang, M.H. Chuang, H.Y. Chen, J.W. Yeh, Microstructure and
Mechanical Performance of Brand-New Al0.3CrFe1.5MnNi0.5 High-Entropy
Alloys, Adv. Eng. Mater. 11 (2009) 788-794.
[3] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78.
[4] M. Choi, I. Ondicho, N. Park, N. Tsuji, “Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure”, Journal of Alloys and Compounds, 780, 2019, 959-966.
[5] B. Gludovatz, A. Hohenwarter, K. Thurston, H. Bei, Z. Wu, E. George, R. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7 (2016) 10602.
[6] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292-303.
[7] Y.C. Liao, T.H. Li, P.H. Tsai, J.S.C. Jang, K.C. Hsieh, C.Y. Chen, J.C. Huang, H.J. Wu, Y.C. Lo, C.W. Huang, I.Y. Tsao, Designing novel lightweight, highstrength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys, Intermetallics 117 (2020) 106673.
[8] X. Zhang, P. Lin, J. Huang, Lattice distortion effect on incipient behavior of Ti-based multi-principal element alloys, J. Mater. Res. Technol. 9 (2020) 8136-8147.
[9] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366-376.
[10] S.H. Shim, J.G. Moon, H. Pouraliakbar, B. J Lee, S.I. Hong, H.S. Kim, Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd. 897 (2022) 163217.
[11] Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546-550.
[12] L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, J. Alloys Compd. 896 (2021) 162852.
[13]Y.L. Qi, T.H. Cao, H.X. Zong, Y.K. Wu, L. He, X.D. Ding, F. Jiang, S.B. Jin, G. Sha, J. Sun, Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping, J. Mater. Sci. Technol. 75 (2021) 154-163.
[14] ASM International. Handbook Committee, Properties and Selection : Irons, Steels, and High-Performance Alloys, Vol.1, Materials Park, OH : ASM International, 1990.
[15] ASM International. Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, Materials Park, OH : ASM International, 1990.
[16] Q. F. He, Z. Y. Ding, Y. F. Ye & Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing, JOM 69 (2017) 2092-2098.
[17] R. Cahn and P. Haasen, “Physical metallurgy”, 4th ed, Amsterdam: North-Holland
[18] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, “Solid-Solution Phase Formation Rules forMulti-component Alloys”, Adv. Eng. Mater. 10 (2008) 534-538.
[19] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, 132 (2012) 233-238.
[20] S. Guo, C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Prog. Nat. Sci: Materials International, 21 (2011) 433-446.
[21] C. S. Wu, P. H. Tsai, C. M. Kuo and C. W. Tsai, “Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys”, Entropy, 20 (2018) 967.
[22] J. W. Yeh, “高熵合金的發展”, 華岡工程學報, 27 (2011) 1-18.
[23] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61 (2013) 4887-4897.
[24] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2-22.
[25] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.
[26] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46.
[27] L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, 631-632 (2013) 227-232.
[28] T. N. Lam, S. Y. Lee, N. T. Tsou, H. S. Chou, B. H. Lai, Y. J. Chang, R. Feng, T. Kawasaki, S. Harjo, P. K. Liaw, A. C. Yeh, M. J. Li, R. F. Cai, S. C. Lo, E. W. Huang, “Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy”, Acta Materialia, 201 (2020) 412-424.
[29] F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high entropy alloys”, Corrosion Science, 159 (2019) 108-161.
[30] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, D. Raabe, “Non-equiatomic High entropy alloys: Approach towards rapid alloy screening and property-oriented design”, Materials Science and Engineering: A, 648 (2015) 183-192.
[31] R. Li, J. Gao, K. Fan, Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys, Mater. Sci. Forum 650 (2010) 265-271.
[32] X. Du, R. Wang, C. Chen, B. Wu, J. Huang, Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy, Key Eng. Mater. 727 (2017) 132-135.
[33] H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, D. Raabe, Stiff, light, strong and ductile: nano-structured High Modulus Steel, Sci. Rep. 7 (2017) 2757.
[34] Y. Di, M. L Wang, L.K. Zhang, H.W. Yan, Y.A. Zhang, Y.P. Lu, A novel Ti45V45(AlCrMo)10 lightweight medium-entropy alloy with outstanding mechanical properties, Mater. Lett. 339 (2023) 134089.
[35] N.D. Stepanov, N. Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Tech. 31 (2015) 1184-1193.
[36] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628-2638.
[37] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys, Adv. Eng. Mater. 12 (2010) 44-49.
[38] M.Y. He, Y.F. Shen, N. Jia, P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today 12 (2021) 101162.
[39] K.S. Chung, J.H. Luan, C.H. Shek, Strengthening and deformation mechanism of interstitially N and C doped FeCrCoNi high entropy alloy, J. Alloy. Compd. 904 (2022) 164118.
[40] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron
doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018)
366-376.
[41] W.D. Callister Jr, D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons (2012).
[42] G. Qin, W.T. Xue, R.R. Chen, H.T. Zheng, L. Wang, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, Grain refinement and FCC phase formation in AlCoCrFeNi high entropy alloys by the addition of carbon, Materialia 6 (2019) 100259.
[43] J.Y. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, Z.K. Li, H.F. Zhang, Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping, J. Mater. Sci. Technol. 78 (2021) 74-80.
[44] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-hill New York (1986).
[45] T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1999) 30-36.
[46] T.T. Shun, Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Compd. 478 (2009) 269-272.
[47] M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, X.L. Wu, Strain hardening in Fe16Mn10Al0.86C5Ni high specific strength steel, Acta Mater. 109 (2016) 213-222.
[48] P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Prog. Mater. Sci. 123 (2022) 100709.
[49] M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Appl. Mater. Today 18 (2020), 100498.
[50] J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40-54.
[51] D.C. Cui, Z.S. Yang, B.J. Guo, L.X. Liu, Z.J. Wang, J.J. Li, J.C. Wang, F. He, Microstructures and mechanical properties of a precipitation hardened refractory multi-principal element alloy, Intermetallics 151 (2022) 107727.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明