參考文獻 |
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299- 303.
[2] W.Y. Tang, M.H. Chuang, H.Y. Chen, J.W. Yeh, Microstructure and
Mechanical Performance of Brand-New Al0.3CrFe1.5MnNi0.5 High-Entropy
Alloys, Adv. Eng. Mater. 11 (2009) 788-794.
[3] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78.
[4] M. Choi, I. Ondicho, N. Park, N. Tsuji, “Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure”, Journal of Alloys and Compounds, 780, 2019, 959-966.
[5] B. Gludovatz, A. Hohenwarter, K. Thurston, H. Bei, Z. Wu, E. George, R. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7 (2016) 10602.
[6] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292-303.
[7] Y.C. Liao, T.H. Li, P.H. Tsai, J.S.C. Jang, K.C. Hsieh, C.Y. Chen, J.C. Huang, H.J. Wu, Y.C. Lo, C.W. Huang, I.Y. Tsao, Designing novel lightweight, highstrength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys, Intermetallics 117 (2020) 106673.
[8] X. Zhang, P. Lin, J. Huang, Lattice distortion effect on incipient behavior of Ti-based multi-principal element alloys, J. Mater. Res. Technol. 9 (2020) 8136-8147.
[9] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366-376.
[10] S.H. Shim, J.G. Moon, H. Pouraliakbar, B. J Lee, S.I. Hong, H.S. Kim, Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd. 897 (2022) 163217.
[11] Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546-550.
[12] L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, J. Alloys Compd. 896 (2021) 162852.
[13]Y.L. Qi, T.H. Cao, H.X. Zong, Y.K. Wu, L. He, X.D. Ding, F. Jiang, S.B. Jin, G. Sha, J. Sun, Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping, J. Mater. Sci. Technol. 75 (2021) 154-163.
[14] ASM International. Handbook Committee, Properties and Selection : Irons, Steels, and High-Performance Alloys, Vol.1, Materials Park, OH : ASM International, 1990.
[15] ASM International. Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, Materials Park, OH : ASM International, 1990.
[16] Q. F. He, Z. Y. Ding, Y. F. Ye & Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing, JOM 69 (2017) 2092-2098.
[17] R. Cahn and P. Haasen, “Physical metallurgy”, 4th ed, Amsterdam: North-Holland
[18] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, “Solid-Solution Phase Formation Rules forMulti-component Alloys”, Adv. Eng. Mater. 10 (2008) 534-538.
[19] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, 132 (2012) 233-238.
[20] S. Guo, C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Prog. Nat. Sci: Materials International, 21 (2011) 433-446.
[21] C. S. Wu, P. H. Tsai, C. M. Kuo and C. W. Tsai, “Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys”, Entropy, 20 (2018) 967.
[22] J. W. Yeh, “高熵合金的發展”, 華岡工程學報, 27 (2011) 1-18.
[23] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61 (2013) 4887-4897.
[24] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2-22.
[25] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.
[26] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46.
[27] L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, 631-632 (2013) 227-232.
[28] T. N. Lam, S. Y. Lee, N. T. Tsou, H. S. Chou, B. H. Lai, Y. J. Chang, R. Feng, T. Kawasaki, S. Harjo, P. K. Liaw, A. C. Yeh, M. J. Li, R. F. Cai, S. C. Lo, E. W. Huang, “Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy”, Acta Materialia, 201 (2020) 412-424.
[29] F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high entropy alloys”, Corrosion Science, 159 (2019) 108-161.
[30] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, D. Raabe, “Non-equiatomic High entropy alloys: Approach towards rapid alloy screening and property-oriented design”, Materials Science and Engineering: A, 648 (2015) 183-192.
[31] R. Li, J. Gao, K. Fan, Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys, Mater. Sci. Forum 650 (2010) 265-271.
[32] X. Du, R. Wang, C. Chen, B. Wu, J. Huang, Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy, Key Eng. Mater. 727 (2017) 132-135.
[33] H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, D. Raabe, Stiff, light, strong and ductile: nano-structured High Modulus Steel, Sci. Rep. 7 (2017) 2757.
[34] Y. Di, M. L Wang, L.K. Zhang, H.W. Yan, Y.A. Zhang, Y.P. Lu, A novel Ti45V45(AlCrMo)10 lightweight medium-entropy alloy with outstanding mechanical properties, Mater. Lett. 339 (2023) 134089.
[35] N.D. Stepanov, N. Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Tech. 31 (2015) 1184-1193.
[36] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628-2638.
[37] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys, Adv. Eng. Mater. 12 (2010) 44-49.
[38] M.Y. He, Y.F. Shen, N. Jia, P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today 12 (2021) 101162.
[39] K.S. Chung, J.H. Luan, C.H. Shek, Strengthening and deformation mechanism of interstitially N and C doped FeCrCoNi high entropy alloy, J. Alloy. Compd. 904 (2022) 164118.
[40] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron
doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018)
366-376.
[41] W.D. Callister Jr, D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons (2012).
[42] G. Qin, W.T. Xue, R.R. Chen, H.T. Zheng, L. Wang, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, Grain refinement and FCC phase formation in AlCoCrFeNi high entropy alloys by the addition of carbon, Materialia 6 (2019) 100259.
[43] J.Y. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, Z.K. Li, H.F. Zhang, Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping, J. Mater. Sci. Technol. 78 (2021) 74-80.
[44] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-hill New York (1986).
[45] T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1999) 30-36.
[46] T.T. Shun, Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Compd. 478 (2009) 269-272.
[47] M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, X.L. Wu, Strain hardening in Fe16Mn10Al0.86C5Ni high specific strength steel, Acta Mater. 109 (2016) 213-222.
[48] P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Prog. Mater. Sci. 123 (2022) 100709.
[49] M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Appl. Mater. Today 18 (2020), 100498.
[50] J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40-54.
[51] D.C. Cui, Z.S. Yang, B.J. Guo, L.X. Liu, Z.J. Wang, J.J. Li, J.C. Wang, F. He, Microstructures and mechanical properties of a precipitation hardened refractory multi-principal element alloy, Intermetallics 151 (2022) 107727. |