博碩士論文 111522124 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.222.106.205
姓名 李玟卉(Wen-Hui Li)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在紡織製造中使用多變量迴歸樹以識別具有瑕疵相依性的參數
(Identifying Parameters with Defect Dependence Using multiple response regression tree in Textile Manufacturing)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在台灣紡織產業中,瑕疵的發生是一個不可避免且持續存在的問題,在生產過程中,機器參數的設定影響到最終產品的良率,如果設置不當導致產品出現各種類型的瑕疵,不僅影響產品的品質,還會導致大量原料浪費,增加了生產成本和資源消耗。
如何有效識別出具有瑕疵相依性之參數是本研究之重點,本研究根據合成資料集與紡織資料集中使用多變量迴歸樹,找出對瑕疵有影響之特徵集,辨識出每個關鍵特徵的交集範圍,並且將各關鍵特徵之範圍組合成規則。
本研究將所提出的方法與先前的研究方法對合成資料集與紡織資料集進行分析與比較。合成資料集的實驗結果顯示本研究方法有效提升了18% 準確度、整體的執行時間快先前的研究方法2倍。紡織資料集的實驗結果,本研究所產生的規則為狹窄且精確的參數範圍,更適合提供建議給操作人員。以上實驗結果表示本研究方法能夠有效識別具有瑕疵相依性的資料集中參數的交集範圍。
摘要(英) The textile industry in Taiwan, the occurrence of defects is an inevitable and ongoing problem. During the production process, the settings of machine parameters affect the yield of the final product. Improper settings will lead to various types of defects in the product. It not only affects the quality of the product, but also leads to a large amount of waste of raw materials, increasing production costs and resource consumption.
How to effectively identify parameters with defect dependencies is the focus of this research. This research uses multiple response regression tree based on synthetic datasets and fabric datasets to find feature sets that have an impact on defects, identify the intersection of each key feature, and combine the range of each key feature into rules.
This study analyzes and compares the proposed method with previous research method on synthetic datasets and fabric datasets. Experimental results on synthetic datasets show that the proposed method effectively improves the precision by 18%, and the overall execution time is 2 times faster than previous research method. Experimental results on fabric datasets show that the rules generated by the proposed method have a narrow and precise parameter range, which is more suitable for suggestions to operators. The above experimental results indicate that the proposed method is effective in identifying the intersection range of parameters in datasets with defect dependencies.
關鍵字(中) ★ 分類與迴歸樹
★ 多變量
★ 識別參數交集範圍
★ 參數規則
關鍵字(英) ★ classification and regression trees
★ multiple response
★ identifying parameter intersection range
★ parameter rules
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
一、緒論 1
1-1 研究背景 1
1-1.1 紡織產業近況 1
1-1.2 參數範圍規則 2
1-1.3 瑕疵相依性 3
1-2 研究動機與目的 4
1-3 問題定義 5
1-4 研究貢獻 5
1-5 論文架構 6
二、相關研究 7
2-1 特徵選取 7
2-2 分類與迴歸樹 8
2-2.1 MPORG 9
2-2.2 MR-CART 10
2-3 線性迴歸 11
三、研究方法 13
3-1 合成資料集 14
3-2 特徵選取 17
3-3 多變量迴歸樹 18
3-4 參數範圍規則 20
四、實驗與討論 22
4-1 資料集 22
4-1.1 合成資料集中參數之Ground Truth 22
4-1.2 紡織資料集中參數之Ground Truth 22
4-2 評估指標 28
4-2.1 Precision and Recall 28
4-2.2 Runtime 29
4-3 實驗一 30
4-3.1 實驗目的 30
4-3.2 實驗方法 30
4-3.3 實驗結果 32
4-4 實驗二 36
4-4.1 實驗目的 36
4-4.2 實驗方法 37
4-4.3 實驗結果 37
4-5 實驗三 40
4-5.1 實驗目的 40
4-5.2 實驗方法 40
4-5.3 實驗結果 41
五、結論與未來展望 43
5-1 結論 43
5-2 未來展望 43
參考文獻 45
參考文獻 [1] 王建敏 (2019)。紡織業製程數位化-品質與交期的改善策略。絲織園地,109,66-68。
[2] 財團法人資訊工業策進會智慧網通系統研究所 (2016年9月12日)。迎接新紡織智慧工廠時代。全球安防科技網。https://www.asmag.com.tw/showpost/10387.aspx
[3] Ida Wahyuni., Chang, C. C., Yang, H. S., Wang, W. J., Liang, D., “Multistage Parameter Optimization for Rule Generation for Multistage Manufacturing Processes,” IEEE Transactions on Industrial Informatics, vol. 20, no. 3, pp. 3857-3867, 2024. https://doi.org/10.1109/TII.2023.3312408
[4] 王伊妲(2024)。多階段製造過程中防止缺陷的新方法: 多階段參數優化規則生成法 (MPORG)。﹝博士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/x68st7。
[5] 吳奕辰(2023)。採多變量迴歸樹在合成資料集中識別最佳製造參數以同時降低多種紡織瑕疵。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/c5jv7q。
[6] Jie Cai, Jiawei Luo, Shulin Wang, Sheng Yang, “Feature selection in machine learning: A new perspective,” Neurocomputing, vol. 300, pp. 70-79, 2018. https://doi.org/10.1016/j.neucom.2017.11.077
[7] Tanishka Garg. (2022, February 22). How Feature selection techniques for machine learning are important? Knoldus Blogs.
https://blog.knoldus.com/how-feature-selection-techniques-for-machine-learning-are-important/
[8] Learn With Whiteboard. (2024, March 25). Filter vs Wrapper vs Embedded Methods For Feature Selection. Types of Feature Selection Methods in ML Explained. Medium.
https://medium.com/@learnwithwhiteboard_digest/filter-vs-wrapper-vs-embedded-methods-for-feature-selection-8cc21e2174f7
[9] R. J. Lewis, An introduction to classification and regression tree (CART) analysis. Annual meeting of the society for academic emergency medicine, 2000.
[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And Regression Trees, 1st ed., 1984.
[11] Brodley, C.E., Utgoff, P.E, “Multivariate Decision Trees,” Machine Learning, vol. 19, pp. 45–77, 1995. https://doi.org/10.1023/A:1022607123649
[12] Lee, D. H., Kim, S. H., Kim, E. S., Kim, K. J., & He, Z, “MR-CART: Multiresponse optimization using a classification and regression tree method,” Quality Engineering, vol. 33, no. 3, pp. 457–473, 2021. https://doi.org/10.1080/08982112.2021.1888120
[13] Lee, Seong-Keon, “On Classification and Regression Trees for Multiple Responses and Its Application,” Journal of Classification, vol. 23, pp. 123-141, 2006. https://doi.org/10.1007/s00357-006-0007-1
[14] Quan, Zhiyu and Valdez, Emiliano A, “Predictive analytics of insurance claims using multivariate decision trees,” Dependence Modeling, vol. 6, no. 1, pp. 377-407, 2018. https://doi.org/10.1515/demo-2018-0022
[15] Roberta Siciliano, Francesco Mola, “Multivariate data analysis and modeling through classification and regression trees,” Computational Statistics & Data Analysis, vol. 32, pp. 285-301, 2000. https://doi.org/10.1016/S0167-9473(99)00082-1
[16] Dudek, Grzegorz, “Multivariate Regression Tree for Pattern-Based Forecasting Time Series with Multiple Seasonal Cycles,” Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology, vol. 655, pp. 85-94, 2017. https://doi.org/10.1007/978-3-319-67220-5_8
[17] Montgomery, Douglas C., Elizabeth A. Peck, G. Geoffrey Vining, “Introduction to linear regression analysis. John Wiley & Sons,” 2021.
[18] Barry Nannings, Ameen Abu-Hanna, Evert de Jonge, “Applying PRIM (Patient Rule Induction Method) and logistic regression for selecting high-risk subgroups in very elderly ICU patients,” International Journal of Medical Informatics, vol 77, issue 4, pp. 272-279, 2008. https://doi.org/10.1016/j.ijmedinf.2007.06.007
[19] Ameen Abu-Hanna, Barry Nannings, Dave Dongelmans, Arie Hasman, “PRIM versus CART in subgroup discovery: When patience is harmful,” Journal of Biomedical Informatics, vol 43, issue 5, pp. 701-708, 2010. https://doi.org/10.1016/j.jbi.2010.05.009
[20] P. Pudil, J. Novovičová, J. Kittler. “Floating search methods in feature selection,” Pattern Recognition Letters, vol. 15, pp. 1119-1125, 1994. https://doi.org/10.1016/0167-8655(94)90127-9
[21] F.J. Ferri, P. Pudil, M. Hatef, J. Kittler, “Comparative study of techniques for large-scale feature selection,” Machine Intelligence and Pattern Recognition, vol. 16, pp. 403–413, 1994. https://doi.org/10.1016/B978-0-444-81892-8.50040-7
指導教授 梁德容 林家瑜(Deron Liang Chia-Yu Lin) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明