參考文獻 |
[1] 王建敏 (2019)。紡織業製程數位化-品質與交期的改善策略。絲織園地,109,66-68。
[2] 財團法人資訊工業策進會智慧網通系統研究所 (2016年9月12日)。迎接新紡織智慧工廠時代。全球安防科技網。https://www.asmag.com.tw/showpost/10387.aspx
[3] Ida Wahyuni., Chang, C. C., Yang, H. S., Wang, W. J., Liang, D., “Multistage Parameter Optimization for Rule Generation for Multistage Manufacturing Processes,” IEEE Transactions on Industrial Informatics, vol. 20, no. 3, pp. 3857-3867, 2024. https://doi.org/10.1109/TII.2023.3312408
[4] 王伊妲(2024)。多階段製造過程中防止缺陷的新方法: 多階段參數優化規則生成法 (MPORG)。﹝博士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/x68st7。
[5] 吳奕辰(2023)。採多變量迴歸樹在合成資料集中識別最佳製造參數以同時降低多種紡織瑕疵。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/c5jv7q。
[6] Jie Cai, Jiawei Luo, Shulin Wang, Sheng Yang, “Feature selection in machine learning: A new perspective,” Neurocomputing, vol. 300, pp. 70-79, 2018. https://doi.org/10.1016/j.neucom.2017.11.077
[7] Tanishka Garg. (2022, February 22). How Feature selection techniques for machine learning are important? Knoldus Blogs.
https://blog.knoldus.com/how-feature-selection-techniques-for-machine-learning-are-important/
[8] Learn With Whiteboard. (2024, March 25). Filter vs Wrapper vs Embedded Methods For Feature Selection. Types of Feature Selection Methods in ML Explained. Medium.
https://medium.com/@learnwithwhiteboard_digest/filter-vs-wrapper-vs-embedded-methods-for-feature-selection-8cc21e2174f7
[9] R. J. Lewis, An introduction to classification and regression tree (CART) analysis. Annual meeting of the society for academic emergency medicine, 2000.
[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And Regression Trees, 1st ed., 1984.
[11] Brodley, C.E., Utgoff, P.E, “Multivariate Decision Trees,” Machine Learning, vol. 19, pp. 45–77, 1995. https://doi.org/10.1023/A:1022607123649
[12] Lee, D. H., Kim, S. H., Kim, E. S., Kim, K. J., & He, Z, “MR-CART: Multiresponse optimization using a classification and regression tree method,” Quality Engineering, vol. 33, no. 3, pp. 457–473, 2021. https://doi.org/10.1080/08982112.2021.1888120
[13] Lee, Seong-Keon, “On Classification and Regression Trees for Multiple Responses and Its Application,” Journal of Classification, vol. 23, pp. 123-141, 2006. https://doi.org/10.1007/s00357-006-0007-1
[14] Quan, Zhiyu and Valdez, Emiliano A, “Predictive analytics of insurance claims using multivariate decision trees,” Dependence Modeling, vol. 6, no. 1, pp. 377-407, 2018. https://doi.org/10.1515/demo-2018-0022
[15] Roberta Siciliano, Francesco Mola, “Multivariate data analysis and modeling through classification and regression trees,” Computational Statistics & Data Analysis, vol. 32, pp. 285-301, 2000. https://doi.org/10.1016/S0167-9473(99)00082-1
[16] Dudek, Grzegorz, “Multivariate Regression Tree for Pattern-Based Forecasting Time Series with Multiple Seasonal Cycles,” Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology, vol. 655, pp. 85-94, 2017. https://doi.org/10.1007/978-3-319-67220-5_8
[17] Montgomery, Douglas C., Elizabeth A. Peck, G. Geoffrey Vining, “Introduction to linear regression analysis. John Wiley & Sons,” 2021.
[18] Barry Nannings, Ameen Abu-Hanna, Evert de Jonge, “Applying PRIM (Patient Rule Induction Method) and logistic regression for selecting high-risk subgroups in very elderly ICU patients,” International Journal of Medical Informatics, vol 77, issue 4, pp. 272-279, 2008. https://doi.org/10.1016/j.ijmedinf.2007.06.007
[19] Ameen Abu-Hanna, Barry Nannings, Dave Dongelmans, Arie Hasman, “PRIM versus CART in subgroup discovery: When patience is harmful,” Journal of Biomedical Informatics, vol 43, issue 5, pp. 701-708, 2010. https://doi.org/10.1016/j.jbi.2010.05.009
[20] P. Pudil, J. Novovičová, J. Kittler. “Floating search methods in feature selection,” Pattern Recognition Letters, vol. 15, pp. 1119-1125, 1994. https://doi.org/10.1016/0167-8655(94)90127-9
[21] F.J. Ferri, P. Pudil, M. Hatef, J. Kittler, “Comparative study of techniques for large-scale feature selection,” Machine Intelligence and Pattern Recognition, vol. 16, pp. 403–413, 1994. https://doi.org/10.1016/B978-0-444-81892-8.50040-7 |