博碩士論文 111521075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.144.2.29
姓名 詹智傑(Chih-Chieh Chan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 1200 V 碳化矽金氧半場效電晶體及蕭特基二 極體反向恢復高溫特性分析
(Reverse Recovery Characteristics of 1200 V SiC MOSFETs and SBDs at High Temperature欣)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 元件動態量測使用雙脈衝量測(double pulse test, DPT)方法時,該雙脈衝量測的操作模式為硬開關且有電阻式負載和電感式負載,而本研究動態量測所使用的模式為電感式負載,除了待測物開關元件本身,還需要額外一顆續流二極體作為待測物關閉時的續流路徑,而這顆續流二極體的反向恢復特性就會影響到待測物開關元件開啟時的切換損耗。
  本研究利用碳化矽金氧半場效電晶體架構之1200 V商用元件Cree C2M0080120D、Infineon AIMW120R060M1H、Toshiba TW060N120C (有內建蕭特基二極體),以及碳化矽蕭特基二極體架構之1200 V商用元件Infineon IDW30G120C5B、Rohm SCS230KE2HR進行在半橋電路中的不同續流二極體對開關元件的硬開關特性影響,研究包含了三個項目之變溫量測與分析:(1) 動態量測下,利用不同商用元件作為續流二極體,觀察開關元件的切換特性,(2) 元件體二極體及蕭特基二極體之順向電壓,和(3) 動態量測下,不同商用元件作為續流二極體時的反向恢復特性。
  經量測後發現使用不同的續流二極體會得到開關元件不同的切換損耗,那是因為體二極體和蕭特基二極體結構的不同,因此會有不同的順向電壓和反向恢復特性。蕭特基二極體相較於體二極體皆會有較低的順向電壓和較佳反向恢復特性,因此在電流流經二極體時,通過蕭特基二極體所產生的功耗也會較低。蕭特基二極體較低的順向電壓也可以使金氧半場效電晶體內建蕭特基二極體元件,使得電流主要通過其內建的蕭特基二極體而非體二極體,因此當電流流過時會有較低的功耗,但會受到金氧半場效電晶體的輸出電容以及內建蕭特基二極體接面電容的影響,所以在室溫時反向恢復特性的部分較不會有明顯的改善,不過在高溫時即可展現出其蕭特基二極體的優勢。在高溫環境中,也可以觀察到蕭特基二極體有較穩定的反向恢復特性,其反向恢復特性不會隨著溫度上升而有劣化的趨勢,因此在高溫環境中使用蕭特基二極體作為續流二極體在半橋電路中會有較低的開啟切換損耗。
  本研究也有利用Silvaco TCAD模擬軟體觀察體二極體在不同溫度下造成順向電壓以及反向恢復特性變化的機制原因,發現溫度上升會使內建電壓降低,使二極體更容易導通,並且也會使少數載子數量增加,使反向恢復特性劣化。
摘要(英) The dynamic measurement of the devices employs the double pulse test (DPT). The primary operating modes for double pulse test include resistive load and inductive load. In this study, the dynamic measurements use the inductive load mode. In this mode, apart from the device under test (DUT) as the switching device, an additional freewheeling diode is required to provide a current path when the DUT is turned off. The reverse recovery characteristics of this freewheeling diode will affect the switching losses when the DUT turns on.
  This study uses 1200 V commercial devices with Silicon Carbide (SiC) Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) structure, specifically the Cree C2M0080120D, Infineon AIMW120R060M1H, and Toshiba TW060N120C, as well as 1200 V commercial devices with SiC Schottky Barrier Diode (SBD) structure, specifically the Infineon IDW30G120C5B and Rohm SCS230KE2HR, for use as the freewheeling diodes investigation including three types of measurements and analysis, (1) the switching characteristics of the switching device, (2) the forward characteristics of the body diodes and SBDs, (3) the reverse recovery characteristics of different commercial devices when they are used as freewheeling diodes.
  It was found that using different freewheeling diodes results in different switching losses for the switching device. This is due to the structural differences between body diodes and SBDs, leading to different reverse recovery characteristics and forward voltage. SBDs generally exhibit lower reverse recovery and forward voltage compared to body diodes. Consequently, when current flows through the freewheeling diode, the power loss through the Schottky barrier diode is lower. The lower forward voltage of SBDs also allows current to pass through the built-in Schottky barrier diode of the MOSFET rather than the body diode, resulting in lower power loss when current flows. However, due to the influence of the MOSFET’s output capacitance and the junction capacitance of the built-in Schottky barrier diode, the reverse recovery characteristics at room temperature do not show significant improvement, but the advantages of the Schottky barrier diode become apparent at high temperatures. SBDs exhibit more stable reverse recovery characteristics, which do not deteriorate with increasing temperature. Therefore, using SBDs as freewheeling diodes in half-bridge circuits results in lower turn-on switching losses at high temperatures.
  This study also uses Silvaco TCAD simulation software to observe the mechanisms behind the changes in forward voltage and reverse recovery characteristics of body diodes at different temperatures. It was found that increasing temperature lowers the built-in voltage, making the diode easier to turn on, and increases the number of minority carriers, thereby deteriorating the reverse recovery characteristics.
關鍵字(中) ★ 碳化矽
★ 金氧半場效電晶體
★ 蕭特基二極體
★ 反向恢復特性
★ 靜態特性
★ 動態特性
關鍵字(英) ★ Silicon Carbide
★ MOSFET
★ SBD
★ Reverse recovery characteristics
★ Static characteristics
★ Dynamic characteristics
論文目次 摘要 V
Abstract VI
目錄 VIII
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 碳化矽金氧半場效電晶體及蕭特基二極體 4
1.2.1 碳化矽晶體結構 4
1.2.2 碳化矽金氧半場效電晶體 5
1.2.3 碳化矽蕭特基二極體 7
1.2.4 碳化矽金氧半場效電晶體及蕭特基二極體的續流二極體的應用 8
1.3 碳化矽元件之動態特性文獻回顧 9
1.4 雙脈衝量測平台架構與原理 16
1.5 研究動機與目的 19
1.6 論文架構 19
第二章 半橋電路中元件切換特性分析 19
2.1 半橋電路介紹 19
2.2 元件介紹與靜態特性量測分析 21
2.2.1 元件介紹 21
2.2.2 靜態特性量測分析 25
2.3 半橋電路中開關元件切換特性量測結果 33
2.3.1 雙脈衝量測平台 33
2.3.2 雙脈衝量測平台之切換特性萃取 37
2.3.3 開關元件切換特性量測結果 39
2.4 續流二極體對切換特性的影響 43
第三章 半橋電路中續流二極體特性分析 46
3.1 續流二極體順向導通電壓特性量測分析 46
3.1.1 順向導通電壓量測環境與量測條件 46
3.1.2 順向導通電壓量測結果 47
3.2 續流二極體反向恢復特性量測分析 65
3.2.1 雙脈衝量測平台 65
3.2.2 雙脈衝量測平台之反向恢復特性萃取 66
3.2.3 反向恢復特性量測結果 67
3.3 物理機制探討與結果 92
第四章 結論 96
參考文獻 98
參考文獻 [1] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3materials, processing, and devices,” Applied Physics Reviews, vol. 5, no. 1, 2018.
[2] 台股產業研究室:2023為電動車充電樁放量元年。2023年1月7日,取自https://wangofnextdoor.blogspot.com/2023/01/2023.html
[3] DIGITIMES:SiC功率元件於電動車應用示意圖。2020年7月30號,取自https://www.digitimes.com.tw/tech/showimg.asp?source=0000588203_7B518E6O1KULAD2UNBUUO&filename=588203-6-NBUUO.jpg&sourcetype=1
[4] Jonathan Liao:SiC MOSFET助攻 電動車續航力多5%。2023年8月1號,取自https://www.edntaiwan.com/20230801ta31-enable-evs-to-travel-5-further-using-sic-mosfet/
[5] M. Buffolo, D. Favero, A. Marcuzzi, C. De Santi, G. Meneghesso, E. Zanoni, M. Meneghini, “Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives”, IEEE Transactions On Electron Devices, Vol. 71, No. 3, March, 2024
[6] B. Jayant Baliga, “Wide Bandgap Semiconductor Power Device - Materials, Physics, Design, and Applications,” Woodhead Publishing Series in Electronic and Optical Materials, pp. 21-24
[7] F. La Via, M. Camarda, A. La Magna, “Mechanisms of growth and defect properties of epitaxial SiC,” Applied Physics Reviews vol. 1, no. 1, 2014
[8] Juefei Yang, Saeed Jahdi, Bernard Stark, Olayiwola Alatise, Jose Ortiz-Gonzalez, Ruizhu Wu, Phil Mellor, “ Crosstalk Induced Shoot-Through in BTI-Stressed Symmetrical & Asymmetrical Double-Trench SiC Power MOSFETs,” IEEE Open Journal of the Industrial Electronics Society vol. 3, 2022
[9] Tech Web:Trench-structure SiC-MOSFETs and Actual Products。2018年1月11日,取自https://techweb.rohm.com/product/power-device/sic/sic-basic/6574/
[10] Mana Hosseinzadehlish, Saeed Jahdi, Xibo Yuan, Chengjun Shen, Yasin Gunaydin, Ian Laird, Olayiwola Alatise, Jose Ortiz-Gonzalez, “Analysis of 1st & 3rd Quadrant Electrothermal Robustness of Symmetrical and Asymmetrical Double-Trench SiC Power MOSFETs Under UIS,” IEEE Workshop on Wide Bandgap Power Devices and Applications in Europe, pp.1-6, 2022
[11] B. Jayant Baliga, “Wide Bandgap Semiconductor Power Device - Materials, Physics, Design, and Applications,” Woodhead Publishing Series in Electronic and Optical Materials, pp. 81-83
[12] Toshiba:What is the forward voltage (VF) of Schottky barrier diodes (SBDs)。2024年,取自https://toshiba.semicon-storage.com/eu/semiconductor/knowledge/faq/diode/what-is-the-forward-voltagevfof-an-sbd.html
[13] “Features of third generation SiC MOSFET Application Note,” Toshiba Inc. , 2023
[14] Jinwei Qi, Kai Tian, Zhangsong Mao, Song Yang, Wenjie Song, Anping Zhang, “Dynamic Characterization of 1.2 kV SiC Power MOSFET Body Diode at Cryogenic and High Temperatures,” IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, pp.179-183, 2018
[15] Cheng Qian, Zhiqiang Wang, Da Zhou, Yuxin Ge, Yimin Zhou , Xingyuan Yan , Guoqing Xin, Xiaojie Shi, “Investigation of Reverse Recovery Phenomenon for SiC MOSFETs in High-Temperature Applications,” IEEE Transactions on Power Electronics, vol. 38, no. 11, 2023
[16] Ahmed Rahouma, Germán G. Oggier, Juan Carlos Balda, Avinash Kashyap,” Static and Dynamic Characterization of 3.3-kV SiC MOSFET Modules With and Without External Anti-Parallel SiC JBS Diode,” IEEE Energy Conversion Congress and Exposition, pp.1-5, 2022
[17] Mahmoud I Masoud, Walid Issa, Wilfred Yates,” A Tutorial on Double Pulse Test of Silicon and Silicon Carbide MOSFETs,” IEEE Workshop on Electrical Machines Design, Control and Diagnosis, pp.1-6, 2023
[18] “C2M0080120D data sheet,” Cree Inc., 2019
[19] “AIMW120R060M1H data sheet,” Infineon Inc., 2023
[20] “TW060N120C data sheet,” Toshiba Inc, 2022
[21] “IDW30G120C5B data sheet,” Infineon Inc., 2021
[22] “SCS230KE2Hdata sheet,” Rohm Inc., 2022
[23] “Keysight PD1500A Double-Pulse Test System Software Guide,” Keysight Technologies, 2020
[24] “Keysight PD1000A Control Software Help File,” Keysight Technologies, 2023
[25] Ruoyu Hou, Juncheng Lu, Di Chen, “Parasitic Capacitance Eqoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs,” IEEE Applied Power Electronics Conference and Exposition, pp.919-924, 2018
[26] Tzu-Hsuan Ho, Yaow-Ming Chen, “On the Switching Loss of the SiC MOSFET Parasitic Capacitors,” IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, pp.1-4, 2023
[27] Mengyu Zhu, Laili Wang, Huaqing Li, Chengzi Yang, Dingkun Ma, Fengtao Yang, “Characteristics of SiC MOSFET in a Wide Temperature Range,” IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, pp.79-82, 2021
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明