博碩士論文 111521076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.227.79.64
姓名 鍾貞祥(Chen-Hsiang Chung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 在歐姆接觸區利用石墨烯和圖案蝕刻降低氮化鎵電晶體歐姆接觸電阻
(Reduced Ohmic Contact Resistance on AlGaNGaN pHEMTs via Graphene and Recessed Patterns)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氮化鋁鎵/氮化鎵高電子遷移率電晶體的歐姆接觸多半是藉由Ti/Al/Ni/Au在高溫熱退火下,來形成良好的歐姆接觸。例如此論文中的850 ℃退火,其金屬與半導體之特徵歐姆接觸電阻(Specific contact resistivity, ρc)為3.26 × 10-5 Ω·cm2,接觸電阻(Contact resistance, RC)為1.39 Ω·mm。若在歐姆接觸區域內利用乾轉印方式,將石墨烯轉印至AlGaN/GaN試片上,可以有效降低特徵歐姆接觸電阻至1.30 × 10-5 Ω·cm2。此外進一步結合歐姆接觸區挖槽,2 μm水平線條凹槽式圖案蝕刻結構結合單層石墨烯,可獲得最低的特徵歐姆接觸電阻(ρc = 1.98 × 10-8 Ω∙cm2)。
此論文研究包含石墨烯轉印流程,以拉曼光譜分析快速熱退火(氮氣環境中進行850 °C、30秒)對石墨烯所造成的影響,最後利用I-V電性量測分析使用石墨烯的歐姆接觸變化。由於石墨烯所帶來與傳統歐姆接觸不同的傳導機制,除了進行高溫熱退火的過程中,可促進Ti/Al/Ni/Au金屬的合金形成(如氮化鈦),並與2DEG通道接觸,石墨烯可在氮化鈦合金的邊界處形成碳化鈦,使其形成等效高參雜濃度,進一步讓歐姆接觸電阻降低。
此外,在歐姆接觸區以不同的凹槽式圖案進行圖案蝕刻結合單層或雙層石墨烯,製作氮化鋁鎵/氮化鎵高電子遷移率電晶體,並比較其特性。結果顯示歐姆接觸區網格凹槽式圖案蝕刻結合雙層石墨烯之元件,呈現最低的導通電阻。此外二種不同凹槽式蝕刻深度(深度在2DEG通道上方或下方)結合雙層石墨烯製作之元件,其直流電性比較結果呈現凹槽式圖案蝕刻深度在2DEG通道上方之元件在導通電阻上較小,其中在歐姆接觸區洞陣列凹槽式元件具有最低的導通電阻。
摘要(英) In traditional AlGaN/GaN HEMTs, ohmic contacts are typically formed using Ti/Al/Ni/Au through high-temperature annealing. For example, in this study, annealing at 850 °C was used to achieve good ohmic contacts, resulting in a specific contact resistivity (ρc) of 3.26 × 10-5 Ω·cm2 and a contact resistance (RC) of 1.39 Ω·mm. By dry transferring graphene onto the AlGaN/GaN sample in the ohmic contact area, the specific contact resistivity was effectively reduced to 1.30 × 10-5 Ω·cm2. Furthermore, by combining the 2 μm horizontal line recessed pattern structure with monolayer graphene in the ohmic contact area, the lowest specific contact resistivity (ρc = 1.98 × 10-8 Ω·cm2) was achieved.
The study includes the graphene transfer process, Raman spectroscopy analysis after rapid thermal annealing at 850 °C for 30 seconds in a nitrogen environment, and basic I-V electrical measurements to analyze the changes in ohmic contact resistance with the use of graphene. The presence of graphene introduces a different conduction mechanism compared to traditional ohmic contacts. During high-temperature annealing, the formation of Ti/Al/Ni/Au alloys (such as titanium nitride) may be promoted, forming a good ohmic contact with the 2DEG channel. Graphene can form titanium carbide at the boundaries of these titanium nitride alloys, resulting in an equivalent high doping concentration, further reducing the ohmic contact resistance.
Additionally, various recessed patterns were etched into the ohmic contact area, combined with either monolayer or bilayer graphene, to fabricate AlGaN/GaN HEMTs, and their characteristics were compared. The comparison of devices with different recessed patterns in the ohmic contact area showed that those with a grid recessed pattern combined with bilayer graphene exhibited the lowest on-resistance. Finally, a DC electrical comparison of devices with two different recessed depths (above or below the 2DEG channel) combined with bilayer graphene showed that the devices with recessed depths above the 2DEG channel had lower on-resistance. Among these, the hole array recessed pattern devices with bilayer graphene demonstrated the lowest on-resistance.
關鍵字(中) ★ 石墨烯
★ 氮化鎵
★ 高電子遷移率電晶體
關鍵字(英) ★ Graphene
★ GaN
★ HEMT
論文目次 摘要......................................................VI
Abstract.................................................VII
致謝....................................................VIII
圖目錄....................................................XI
表目錄..................................................XVII
1 第一章 緒論..............................................1
1.1 前言...................................................1
1.2 氮化鎵材料之極化特性....................................3
1.3 氮化鋁鎵/氮化鎵高電子遷移率電晶體發展概況.................5
1.3.1 傳統式歐姆接觸........................................7
1.3.2 離子佈植式歐姆接觸...................................11
1.3.3 重新生長式歐姆接觸...................................13
1.3.4 凹槽式歐姆接觸.......................................15
1.3.5 低溫退火歐姆接觸.....................................18
1.3.6 藉由石墨烯改善歐姆接觸................................21
1.4 研究動機與目的.........................................22
1.5 論文架構..............................................23
2 第二章 石墨烯轉印製程與氮化鎵歐姆接觸特性分析...............24
2.1 石墨烯轉印品質與基本電性研究分析........................24
2.1.1 石墨烯乾式轉印.......................................24
2.1.2 拉曼光譜分析.........................................26
2.1.3 高溫對石墨烯影響分析.................................26
2.1.4 石墨烯改善歐姆接觸的傳導機制..........................29
2.2 AlGaN/GaN HEMTs之磊晶結構與特性量測分析.................36
2.2.1 AlGaN/GaN HEMTs之磊晶結構...........................36
2.2.2 傳輸線模型量測.......................................37
2.2.3 霍爾量測............................................39
2.3 凹槽式石墨烯歐姆接觸之AlGaN/GaN HEMTs佈局設計與製程流程..40
2.3.1 凹槽式歐姆接觸之佈局設計..............................40
2.3.2 凹槽式石墨烯AlGaN/GaN HEMTs之佈局設計.................41
2.3.3 凹槽式石墨烯AlGaN/GaN HEMTs之製程流程.................43
2.4 本章總結..............................................46
3 第三章 凹槽式石墨烯歐姆接觸之AlGaN/GaN HEMT元件電性量測分析 47
3.1 歐姆接觸電阻分析.......................................47
3.1.1 凹槽式圖案蝕刻對歐姆接觸電阻的影響.....................47
3.1.2 凹槽式圖案蝕刻與單層石墨烯對歐姆接觸電阻的影響..........49
3.1.3 凹槽式圖案蝕刻與雙層石墨烯對歐姆接觸電阻的影響..........50
3.2 電流-電壓特性分析......................................53
3.2.1 凹槽式圖案蝕刻結合單層與雙層石墨烯AlGaN/GaN HEMTs......53
3.2.2 不同凹槽式圖案蝕刻深度結合雙層石墨烯AlGaN/GaN HEMTs....64
3.3 元件崩潰電壓特性分析...................................77
3.4 本章總結..............................................79
4 第四章 結論.............................................80
參考文獻..................................................81
附錄Ⅰ 石墨烯乾式轉印製程流程................................85
附錄Ⅱ 元件製程流程.........................................86
附錄Ⅲ 氟化石墨烯鈍化層之電晶體電性量測分析..................89
參考文獻 [1]R. Brown, “A novel AlGaNGaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness,” Phd Thesis, University of Glasgow, 2015.
[2]Ezgi Dogmus, Selsabil SEJIL, Poshun Chiu, “ GaN RF MARKET: APPLICATIONS, PLAYERS, TECHNOLOGY, AND SUBSTRATES 2021,” YOLE Developpement, Market & Technology Report, June 2021.
[3]S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “ A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, no. 1, Jan. 2018.
[4]M. Buffolo, D. Favero, A. Marcuzzi, C. De Santi, G. Meneghesso, E. Zanoni, and M. Meneghini, “Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives,” IEEE Trans. Electron Devices, vol. 71, no. 3, pp. 1344-1355, Mar. 2024.
[5]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001.
[6]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, Mar. 1999.
[7]G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Applied Surface Science, vol. 383, pp. 324-345, 2016.
[8]M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, H. Morkoç, “Low resistance ohmic contacts on wide band‐gap GaN,” Appl. Phys. Lett., vol. 64, no. 8, pp. 1003-10055, Feb. 1994.
[9]Q. Z. Liu and S. S. Lau, “A review of the metal-Gan contact technology,” Solid-State Electronics, vol. 42, no. 5, pp. 677-691, 1998.
[10]Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Very low resistance multilayer ohmic contact to n-GaN,” Appl. Phys. Lett., vol. 68, no. 12, pp.1672-1674, Mar. 1996.
[11]T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Electron Device Letters, vol. 26, no. 11, pp. 781-783, 2005.
[12]M. W. Fay, G. Moldovan, N. J. Weston, P. D. Brown, I. Harrison, K. P. Hilton, A. Masterton, D. Wallis, R. S. Balmer, M. J. Uren, and T. Martin, “Structural and electrical characterization of AuPdAlTi ohmic contacts to AlGaN∕GaN with varying Ti content,” Journal of Applied Physics, vol. 96, no. 10, pp. 5588-5595, 2004.
[13]F. M. Mohammed, L. Wang, I. Adesida, and E. Piner, “The role of barrier layer on Ohmic performance of Ti ∕ Al-based contact metallizations on AlGaN ∕ GaN heterostructures,” Journal of Applied Physics, vol. 100, no. 2, 2006.
[14]J. D. Guo, C. I. Lin, M. S. Feng, F. M. Pan, G. C. Chi, C. T. Lee, “A bilayer Ti/Ag ohmic contact for highly doped n‐type GaN films,” Appl. Phys. Lett., vol. 68, no. 2, pp.235-237, 1996.
[15]M. L. Lee, J. K. Sheu, C. C. Hu, “Nonalloyed Cr/Au-based ohmic contacts to n-GaN,” Appl. Phys. Lett., vol. 91, no. 18, 2007.
[16]X. Kong, K. Wei, G. Liu, J. Wang, and X. Liu, "Dislocation induced nonuniform surface morphology of Ti/Al/Ni/Au Ohmic contacts to AlGaN/GaN HEMTs."The 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology. IEEE, 2012
[17]H. Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, and U. Mishra, “Ion implanted AlGaN–GaN HEMTs with nonalloyed Ohmic contacts,” IEEE Electron Device Lett., vol. 26, no. 5, pp. 283-285, May 2005.
[18]F. Recht, L. McCarthy, S. Rajan, A. Chakraborty, C. Poblenz, A. Corrion, J. S. Speck, and U. K. Mishra, “Nonalloyed Ohmic contacts in AlGaN/GaN HEMTs by Ion implantation with reduced activation annealing temperature,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 205-207, Apr. 2006.
[19]B. Song, M. Zhu, Z. Hu, M. Qi, K. Nomoto, X. Yan, Y. Cao, D. Jena, and H. G. Xing, “Ultralow-leakage AlGaN/GaN high electron mobility transistors on Si with non-alloyed regrown Ohmic contacts,” IEEE Electron Device Lett., vol. 37, no. 1, pp. 16-19, Jan. 2016.
[20]H. Çakmak, M. Öztürk, E. Özbay, and B. Imer, “Nonalloyed Ohmic contacts in AlGaN/GaN HEMTs with MOCVD regrowth of InGaN for Ka-band applications,” IEEE Trans. Electron Devices, vol. 68, no. 3, pp. 1006-1010, Mar. 2021.
[21]C. Wang, M. D. Zhao, Y. L. He, X. F. Zheng, X. X. Wei, W. Mao, X. H. Ma, J. C. Zhang, Y. Hao, “Optimization of ohmic contact for AlGaN/GaN HEMT by introducing patterned etching in ohmic area,” Solid-State Electronics, vol. 129, pp. 114-119, Mar. 2017.
[22]B. Benakaprasad, A. M. Eblabla, X. Li, K. G. Crawford, and K. Elgaid, “Optimization of Ohmic contact for AlGaN/GaN HEMT on low-resistivity silicon,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 863-868, Mar. 2020.
[23]陳智偉, “氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作,”碩士論文, 國立中央大學電機工程學系, 桃園, 2020.
[24]A. Firrincieli, B. D. Jaeger, S. You, D. Wellekens, M. V. Hove and S. Decoutere, “Au-free low temperature ohmic contacts for AlGaN/GaN power devices on 200 mm Si substrates,” Jpn. J. Appl. Phys., vol. 53, 2014.
[25]O. Odabasi, A. Ghobadi, T. G. U. Ghobadi, Y. Unal,G. Salkım, G. Basar, B. Butun , and E. Ozbay, “Impact of the low temperature ohmic contact process on DC and forward gate bias stress operation of GaN HEMT devices,” IEEE Electron Device Lett., vol. 43, no. 10, pp. 1609-1612, 2022.
[26]游欣容, “挖洞式無金歐姆接觸之氮化鎵高電子遷移率電晶體,” 碩士論文, 國立中央大學電機工程學系, 桃園, 2021.
[27]G. Fisichella, G. Greco, F. Roccaforte, F. Giannazzo, “From Schottky to ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure,” Appl. Phys. Lett., vol. 105, no. 6, 2014.
[28]陳逸弘, “利用石墨烯改善氮化鎵歐姆接觸之研究,” 碩士論文, 國立中央大學電機工程學系, 桃園, 2023.
[29]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” science, vol. 324, no. 5932, pp. 1312-1314, 2009.
[30]X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano letters, vol. 9, no. 12, pp. 4359-4363, 2009.
[31]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, pp. 706-710, 2009.
[32]M. B. Shavelkina, R. H. Amirov, and T. B. Shatalova, “The effect of reactor geometry on the synthesis of graphene materials in plasma jets,” J. Phys.: Conf. Ser., vol. 857, 2017.
[33]W. Choi, Y. S. Seo, J. Y. Park, K. B. Kim, J. Jung, N. Lee, Y. Seo, S. Hong, “Effect of Annealing in Ar/H2 Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate),” IEEE Transactions on Nanotechnology, vol. 14, no. 1, pp. 70-74, Jan. 2015.
[34]O. Nakatsuka1, K. Hisada, S. Oida, A. Sakai and S. Zaima, “Crystalline structure of TiC ultrathin layers formed on highly oriented pyrolytic graphite by chemical reaction from Ti/graphite system,” Jpn. J. Appl. Phys., vol. 55, 2016.
[35]M. Okamoto, K. Kakushima, Y. Kataoka, A. Nishiyama, N. Sugii, H. Wakabayashi, K. Tsutsui, and H. Iwai, “Dependence of Ti/C ratio on Ohmic contact with tic electrode for AlGaN/GaN structure,” IEEE Workshop on Wide Bandgap Power Devices and Applications, pp. 94-97, 2014.
[36]G. Greco, S. Di Franco, R. Lo Nigro, C. Bongiorno, M. Spera, P. Badalà, F. Iucolano, and F. Roccaforte, “Improvement of Ti/Al/Ti Ohmic contacts on AlGaN/GaN heterostructures by insertion of a thin carbon interfacial layer,” Appl. Phys. Lett., vol. 124, no. 1, 2024.
[37]F. Saba, F. Zhang, S. A. Sajjadi, and M. Haddad-Sabzevar, “Surface-Modified-CNTs/Al Matrix Nanocomposites Produced via Spark Plasma Sintering: Microstructures, Properties, and Formation Mechanism,” Spark Plasma Sintering of Materials, 2019.
[38]F. Iucolano, G. Greco, and F. Roccaforte, “Correlation between microstructure and temperature dependent electrical behavior of annealed Ti/Al/Ni/Au Ohmic contacts to AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 103, no. 20, 2013.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明