博碩士論文 111521067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.141.31.108
姓名 王怡雯(Yi-Wen Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 在厚緩衝層矽基板上研發不同閘汲間距的1200 V加強型氮化鎵電晶體
(Development of 1200 V E-mode AlGaN/GaN HEMTs on Si substrate with thick buffer layer)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 提高GaN-on-Si元件的崩潰電壓是一個重要的設計考量,本實驗採用了相對較厚(6.5 μm)的碳摻雜緩衝層作為磊晶的一部分,並生長在低阻值的矽基板上。通過閘汲間距(LGD)尺寸的評估和公式推導,預測元件的尺寸和崩潰電壓的關係。利用Silvaco TCAD軟體對不同閘汲間距元件進行電性分析和崩潰電壓預測,並在此磊晶結構上製作出加強型氮化鎵閘極電晶體以進行量測分析和比較。後續並探討了不同緩衝層厚度對崩潰電壓的影響,以期能了解GaN-on-Si的磊晶緩衝層對不同崩潰電壓規格的關係,進而得到適當元件結構及減少磊晶成本。
不同閘汲間距的p-GaN gate AlGaN/GaN HEMTs元件,在矽基板接地的設定下進行崩潰電壓量測。當LGD = 8 μm時,元件在汲極漏電流達1 mA/mm時的崩潰電壓為1298 V,LGD = 11 μm則為1742 V,其特徵導通電阻(RON,SP)分別為1.55 m∙cm2和 1.77 m∙cm2。通過觀察汲極、閘極和垂直方向的緩衝層基板漏電流,發現在LGD = 8 μm的設計中,崩潰電壓的主要限制並非來自垂直方向的緩衝層基板漏電流,原因是由於閘汲間距短,使緩衝層厚度的漏電流影響變成非影響崩潰電壓的主因,而在LGD = 11 μm的元件中,垂直方向的緩衝層基板漏電流則成為崩潰電壓的主要限制因素。同時也觀察實驗室之前的製程元件,在LGD > 11 μm的元件中,垂直方向的緩衝層基板漏電流確認為崩潰電壓的主要限制因素。
雖然此實驗主要採用6.5 μm的碳摻雜緩衝層為製程晶片,但最後利用Silvaco TCAD軟體進行不同緩衝層厚度對崩潰電壓的分析,在使用相同元件結構設計(LGD = 8 μm),並以維持1200 V崩潰電壓的前提下,對不同緩衝層厚度進行研究。根據模擬結果,緩衝層厚度可從本實驗所使用之6.5 μm縮減至4.5 μm,仍然在汲極漏電流定義在1 mA/mm時,達到1251 V的崩潰電壓。
摘要(英) Improving the blocking voltage of GaN-on-Si devices is an important design consideration. In this experiment, a relatively thick (6.5 μm) carbon-doped buffer layer was used as part of the epitaxial structure, grown on a low-resistivity silicon substrate. By estimating the gate-drain distance (LGD) dimension and formula derivation, the relationship between device size and blocking voltage was observed. Using Silvaco TCAD simulation, the electrical characteristics and blocking voltage prediction of devices with different gate-drain distances were analyzed. Enhancement-mode GaN gate transistors were then fabricated on this epitaxial structure for measurement and analysis. The impact of different buffer layer thicknesses on the blocking voltage was investigated, in order to understand the relationship between the GaN-on-Si epitaxial buffer layer and the blocking voltage specifications, and to obtain the appropriate device structure and reduce manufacturing costs.

p-GaN gate AlGaN/GaN HEMTs devices with different gate-drain distances were measured for off-state blocking voltage under silicon substrate conditions. When LGD = 8 μm, the device exhibited a blocking voltage of 1298 V at a drain leakage current of 1 mA/mm, and when LGD = 11 μm, the blocking voltage was 1742 V, with corresponding specific on-resistance (RON,SP) values of 1.55 mΩ·cm2 and 1.77 mΩ·cm2, respectively. By observing the drain, gate, and vertical substrate leakage currents, it was found that for the LGD = 8 μm design, the primary limitation on blocking voltage was not the vertical buffer substrate leakage current, likely due to the short gate-drain distance. In contrast, for the LGD = 11 μm design, the vertical buffer substrate leakage current became the main limiting factor for the blocking voltage. Previous experiments also confirmed that for devices with LGD larger than 11 μm, the vertical buffer substrate leakage current was the primary limitation for the blocking voltage.

Although this experiment primarily used a 6.5 μm carbon-doped buffer layer, Silvaco TCAD simulations were ultimately performed to analyze the impact of different buffer layer thicknesses on the blocking voltage. Using the same device structure design (LGD = 8 μm) and maintaining a 1200 V blocking voltage, the study was conducted for various buffer layer thicknesses. The simulation results showed that the buffer layer thickness could be reduced from the 6.5 μm used in this experiment to 4.5 μm, while still achieving a 1251 V blocking voltage at a drain leakage current of 1 mA/mm.
關鍵字(中) ★ 氮化鎵
★ p型氮化鎵閘極氮化鋁鎵 /氮化鎵高電子遷移率電晶體
關鍵字(英) ★ GaN
★ p-GaN gate AlGaN/GaN HEMT
論文目次 中文摘要 I
Abstract II
致謝 III
圖目錄 V
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 寬能矽GaN半導體材料特性 3
1.3 P型氮化鎵閘極電晶體及崩潰電壓與導通電阻改善方法 4
1.3.1大於1200 V加強型氮化鎵閘極電晶體之閘汲極間距文獻回顧 4
1.3.2崩潰電壓與導通電阻改善方法 11
1.4 研究動機與目的 19
1.5 論文架構 20
第二章 氮化鎵電晶體之磊晶結構與元件模擬分析 21
2.1氮化鋁鎵/氮化鎵於矽基板之磊晶結構與特性 21
2.2元件之閘汲極間距設計與尺寸評估 27
2.3元件之閘汲極不同尺寸模擬 30
2.4 P-GaN gate AlGaN/GaN HEMTs之佈局與製程流程 38
2.4.1元件佈局 38
2.4.2 P-GaN gate AlGaN/GaN HEMTs之製程流程 39
2.5結論 44
第三章 P型氮化鎵閘極之不同閘汲間距元件量測與分析 45
3.1元件基本電性量測 46
3.2元件直流電性量測 50
3.3元件崩潰電壓之矽基板接地量測 54
3.4元件崩潰電壓之緩衝層厚度分析 61
3.5結論 69
結論 72
參考文獻 73
附錄 I 詳細製程流程 76
Acknowledgement 79
參考文獻 [1] R. Brown, “A novel AlGaNGaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness,” Phd Thesis, University of Glasgow, 2015.
[2] S. Coffa, M. Saggio and A. Patti, "SiC- and GaN-based power devices: Technologies, products and applications," IEEE International Electron Devices Meeting (IEDM), pp. 16.8.1-16.8.5, 2015.
[3] M. Buffolo et al., "Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives," IEEE Transactions on Electron Devices, vol. 71, no. 3, pp. 1344-1355, March 2024.
[4] D. Balaz, “Current collapse and device degradation in AlGaN GaN heterostructure field effect transistors,” Phd Thesis, University of Glasgow, 2010.
[5] Yong Cai, Yugang Zhou, K. J. Chen and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," IEEE Electron Device Letters, vol. 26, no. 7, pp. 435-437, July 2005.
[6] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda and I. Omura, "Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications," IEEE Transactions on Electron Devices, vol. 53, no. 2, pp. 356-362, Feb. 2006.
[7] J.-I. Chyi, H. Fujioka, H. Morkoç, D. Marcon, M. Van Hove, B. De Jaeger, N. Posthuma, D. Wellekens, S. You, X. Kang, T.-L. Wu, M. Willems, S. Stoffels, and S. Decoutere, “Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200mm GaN-on-Si with Au-free technology,” Proc. of SPIE, vol. 9363, pp. 936311-1–936311-12, 2015.
[8] Nariaki Ikeda, Shusuke Kaya, Jiang Li, Takuya Kokawa, Mitsuru Masuda and Sadahiro Katoh, "High-power AlGaN/GaN MIS-HFETs with field-plates on Si substrates," International Symposium on Power Semiconductor Devices & IC′s, Barcelona, pp. 251-254, 2009.
[9] I. Hwang et al., "1.6kV, 2.9 mΩ cm2 normally-off p-GaN HEMT device," International Symposium on Power Semiconductor Devices and ICs, Bruges, Belgium, pp. 41-44, 2012.
[10] J. Gao, Y. Jin, Y. Hao, B. Xie, C. P. Wen, B. Shen, and M. Wang, “Gate-Recessed Normally OFF GaN MOSHEMT With High-Temperature Oxidation Wet Etching Using LPCVD Si3N4 as the Mask,” IEEE Transactions on Electron Devices, 2018.
[11] X. Wei, X. Zhang, C. Sun, W. Tang, C. Zeng, F. Chen, T. He, G. Yu, L. Song, W. Lin, X. Zhang, D. Zhao, W. Huang, Y. Cai, and B. Zhang, “Improvement of Breakdown Voltage and ON-Resistance in Normally-OFF AlGaN/GaN HEMTs Using Etching-Free p-GaN Stripe Array Gate,” IEEE Transactions on Electron Devices, vol. 68, no. 10, pp. 5041-5047, 2021.
[12] H. Guo et al., "Over 1200 V Normally-OFF p-NiO Gated AlGaN/GaN HEMTs on Si With a Small Threshold Voltage Shift," IEEE Electron Device Letters, vol. 43, no. 2, pp. 268-271, Feb. 2022.
[13] S. Lawrence Selvaraj, T. Suzue and T. Egawa, "Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers," IEEE Electron Device Letters, vol. 30, no. 6, pp. 587-589, June 2009.
[14] I. B. Rowena, S. L. Selvaraj and T. Egawa, "Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si," IEEE Electron Device Letters, vol. 32, no. 11, pp. 1534-1536, Nov. 2011.
[15] S. L. Selvaraj, A. Watanabe, A. Wakejima and T. Egawa, "1.4-kV Breakdown Voltage for AlGaN/GaN High-Electron-Mobility Transistors on Silicon Substrate," IEEE Electron Device Letters, vol. 33, no. 10, pp. 1375-1377, Oct. 2012
[16] Y. C. Choi, M. Pophristic, M. G. Spencer and L. F. Eastman, "High Breakdown Voltage and Low Specific On-resistance C-doped GaN-on-sapphire HFETs for Low-loss and High-power Switching Applications," IEEE Applied Power Electronics Conference and Exposition, pp. 1264-1267, 2007.
[17] W. Zhang, J. Zhang, M. Xiao, L. Zhang and Y. Hao, "Al0.3Ga0.7N/GaN (10 nm)/Al0.1Ga0.9N HEMTs With Low Leakage Current and High Three-Terminal Breakdown Voltage," IEEE Electron Device Letters, vol. 39, no. 9, pp. 1370-1372, Sept. 2018.
[18] M. Xiao et al., "Novel 2000 V Normally-off MOS-HEMTs using AlN/GaN Superlattice Channel," International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 471-474, 2019.
[19] O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel and J. Würfl, "Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer," International Symposium on Power Semiconductor Devices and ICs, pp. 239-242, 2011.
[20] M. Ishida, T. Ueda, T. Tanaka and D. Ueda, "GaN on Si Technologies for Power Switching Devices," IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3053-3059, Oct. 2013.
[21] H. Jiang, R. Zhu, Q. Lyu and K. M. Lau, "High-Voltage p-GaN HEMTs With OFF-State Blocking Capability After Gate Breakdown," IEEE Electron Device Letters, vol. 40, no. 4, pp. 530-533, April 2019.
[22] H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng and K. M. Lau, "1300 V Normally-OFF p-GaN Gate HEMTs on Si With High ON-State Drain Current," IEEE Transactions on Electron Devices, vol. 68, no. 2, pp. 653-657, Feb. 2021.
[23] E. Canato, M. Meneghini, A. Nardo, F. Masin, A. Barbato, M. Barbato, A. tockman, A. Banerjee, P. Moens, E. Zanoni, G. Meneghesso, "ESD-failure of E-mode GaN HEMTs: Role of device geometry and charge trapping, " Microelectronics Reliability, Volumes 100–101, 2019.
[24] D. Visalli, M. V. Hovea, P. Srivastava, D. Marcona, Karen, Geens, X. Kanga, E. Vandenplasa, J. Viaenea, M. Leysa, K. Chenga, B. Sijmusa, S. Decouterea, and G. Borghs, "GaN-on-Si For High-Voltage Applications," ECS Transactions, vol. 41, pp. 101-112, 2011.
[25] 吳晟豪, "1200V加強型矽基板氮化鎵高電子遷移率電晶體開發," 國立中央大學電機工程學系碩士論文, 2023.
[26] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, " Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[27] W. C Chen, H.H Lo and Y. M Hsin, "Threshold Voltage Instability After Double Pulse Test Under Different OFF-State Drain Voltages and ON-State Drain Currents in p-GaN Gate AlGaN/GaN HEMT, " ECS Journal of Solid State Science and Technology, vol. 13, no. 5, pp. 55003, 2024.
指導教授 辛裕明 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明