博碩士論文 111323033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.135.188.108
姓名 劉晉友(Jin-You Liou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 下顎骨板彎折之殘留應力於重建手術之生物力學影響
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 下顎骨為人體顏面骨中最容易破損的區域之一。近年來針對下顎骨節段性缺損使用重建骨板進行重建手術治療的應用越來越廣泛,該類手術以金屬骨板貼合斷裂區域與鎖入骨釘用來固定支撐,然而儘管金屬骨板有經過彎曲疲勞測試,但有不少病患在下顎復原時發生骨板斷裂或失效現象。重建骨板會先在術前根據患者模型初步彎折,在手術中進一步微調,以達到貼合患者的下顎骨輪廓。然而過去幾乎沒有文獻在分析彎折時產生的殘留應力及其影響,導致評估骨板耐久性時過於樂觀。
本研究由實驗取得Ti-Grade.4純鈦骨板拉伸性質,以沖壓骨板的殘留應力分析驗證骨板塑性分析的可行性。建立健康與不同缺損大小(35 mm和75 mm)的下顎骨模型,利用位移控制使骨板產生殘留應力,然後施加咬合肌力,以評估骨板有、無殘留應力對於下顎骨重建骨板系統的生物力學影響。此外,進一步探討有、無於鄰近缺損處植入骨釘與骨釘垂直或傾斜植入的差異。
研究結果顯示,實驗得到的材料真實應力-應變圖,與其他文獻相似。在沖壓骨板分析中,雖然不同軟體所得的骨板應力有差異,但是在沖頭壓到底與離開時殘留應力的分布趨勢相似。在下顎骨重建骨板系統中,重建的下顎骨大缺損系統相較健康的下顎骨,在承受咬合肌力時,骨頭的最大等效應力與應變分別增加了166%與181%,顯示即使有骨板作為支撐,缺損模型的骨頭仍承受更高的應力。此外,骨板彎折處有明顯的應力提高,且大缺損模型的骨板應力比小缺損模型的大。當分析時有考慮骨板的殘留應力,則小缺損模型骨板承受咬合肌力時的應力變大,會影響骨板的耐久性。大缺損模型無論骨板有、無殘留應力,受到咬合肌力時的應力皆超過降伏強度,顯示在下顎缺損較大的病例,若無搭配腓骨進行重建,骨板有高機率會發生斷裂。在鄰近缺損處植入骨釘時,骨釘周圍的骨頭等效應變比沒植入的還要大,且正10度植入者的應變最大,顯示在鄰近缺損處植入骨釘與植入角度皆會影響整體穩定度。本研究的限制包含骨板模型寬度不一致、骨釘模型未設計螺紋、未建立顳顎關節模型、骨板預應力作用位置與大小等,這些問題需要進一步探討。
摘要(英) The mandible is one of the most susceptible areas of the facial bones to damage. In recent years, the use of mandible reconstruction plate for the treatment of segmental defects of the mandible has become increasingly widespread. These surgeries involve attaching metal plates to the fractured area and securing them with screws for support. However, despite the metal plates undergoing bending fatigue tests, many patients experience plate fractures or failures during mandibular recovery. Reconstruction plate are initially bent to fit the patient’s model preoperatively and are further adjusted during surgery to fit the contour of the patient’s mandible. However, past literature rarely analyzes the residual stresses and their impacts resulting from bending, leading to overly optimistic evaluations of the plate′s durability.
This study obtained the tensile properties of Ti-Grade.4 plates through experiments and verified the feasibility of plastic analysis including residual stress analysis in stamped plates. Mandibular models with different defect sizes (35 mm and 75 mm) and a healthy model were established. Occlusal muscle forces were applied to observe the stress and strain responses of the bones. Residual stress was induced in the plates using displacement control, and then occlusal muscle forces were applied to evaluate the biomechanical impact of the plates with and without residual stress on the mandibular reconstruction system. Additionally, the effects of inserting screws near the defect site, both vertically and inclined, were investigated.
The results showed that the true stress-strain curves obtained from the experiments were similar to those in other literature. In the stamped plate analysis, although the stress varied between different software, the residual stress distribution trends were similar when the punch pressed down and retracted. The analysis of the mandibular reconstruction system revealed that the reconstructed mandible with a large defect showed a 166% increase in maximum equivalent stress and a 181% increase in strain under occlusal muscle force compared to the healthy mandible, indicating that even with plate support, the bone in the defect model endured higher stress. Moreover, there was a significant increase in stress at the bent areas of the plates, with the stress in the plate of the large defect model being higher than that in the small defect model. When residual stress was present, the plate in the small defect model experienced increased stress under occlusal muscle force, affecting the plate′s durability. In the large defect model, stress exceeded the yield strength regardless of the presence of residual stress, indicating a high likelihood of plate fracture in cases of significant mandibular defects without fibula reconstruction. When screws were inserted near the defect site, the equivalent strain around the screws was higher than in models without screws, with the highest strain observed in screws inserted at a 10-degree inclination, showing that both the insertion of screws and the insertion angle affect overall stability. Limitations of this study include inconsistent widths in the plate model, the absence of threads in the screw model, the lack of a temporomandibular joint model, and uncertainties in the location and magnitude of prestress in the plates, which require further investigation.
關鍵字(中) ★ 下顎重建手術
★ 重建骨板
★ 有限元素分析
★ 殘留應力
★ 生物力學響應
關鍵字(英) ★ Mandibular Reconstruction Surgery
★ Reconstruction Plates
★ Finite Element Analysis
★ Residual Stress
★ Biomechanical Response
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 下顎骨構造介紹 3
1-2-1 下顎骨 3
1-2-2 顳顎關節 4
1-2-3 下顎骨咬合肌群 5
1-3 下顎缺損治療方法 7
1-4 常見重建骨板類型與其使用問題 11
1-5 研究目的 15
1-6 本文架構 16
第二章 文獻回顧 18
2-1下顎骨節段性缺損之重建的臨床研究 18
2-2 有限元素分析 20
2-2-1 下顎骨頭之材料特性 20
2-2-2 下顎骨板之生物力學分析 21
2-3 骨板斷裂原因探討 24
2-4 下顎骨之骨頭厚度 26
第三章 研究方法 30
3-1 拉伸實驗 32
3-2 下顎骨與重建骨板模型建立 37
3-2-1 Amira影像處理 37
3-2-2 網格處理 39
3-2-3 實體下顎骨模型 40
3-2-4 重建骨板與骨釘模型 42
3-3 下顎骨板之有限元素分析 43
3-3-1有限元素法分析步驟 44
3-3-2材料性質設定 44
3-3-3元素及網格設定 45
3-3-4接觸與邊界條件設定 47
3-3-5分析結果之指標選用 52
3-3-6收斂性分析 53
3-4 沖壓成形之有限元素分析 54
第四章 結果與討論 56
4-1 拉伸實驗結果 56
4-2 ANSYS與QForm軟體在塑性變形分析之比較 60
4-3 網格收斂分析 65
4-4 咬合時之生物力學響應 68
4-4-1 骨頭之最大等效應力、應變與變形量 68
4-4-2 骨板未考量殘留應力之結果 76
4-4-3 骨板考量殘留應力之結果 79
4-5 骨板彎折後有、無復位之生物力學響應 90
4-6 鄰近骨缺損截面附近植入骨釘之生物力學響應 92
4-6-1 骨釘影響周圍骨頭生物力學之結果 92
4-6-2 骨釘不同植入角度之骨板力學指標結果 96
4-6-3 骨釘指標觀察 97
第五章 結論與未來研究方向 99
5-1 結論 99
5-2 未來研究方向 101
參考文獻 103
參考文獻 1. 衛生福利部。112年國人死因統計結果。Available from:
https://www.mohw.gov.tw/cp-16-79055-1.html
2. 衛生福利部。檳榔健康危害防制暨口腔癌防治。Available from:
https://www.hpa.gov.tw/Pages/List.aspx?nodeid=204
3. Nagasao, T., Miyamoto, J., Tamaki, T., and Kawana, H., A comparison of stresses in implantation for grafted and plate-and-screw mandible reconstruction. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Endodontics. Vol. 109, Iss. 3, pp. 346-56, 2010.
4. Neelakandan, R. S., and Bhargava, D., Transport distraction along the mandibular midline. International Journal of Stomatology & Occlusion Medicine. Vol. 4, Iss. 3, pp. 123-126, 2011.
5. Almansoori, A. A., Choung, H. W., Kim, B., Park, J. Y., Kim, S. M., and Lee, J. H., Fracture of Standard Titanium Mandibular Reconstruction Plates and Preliminary Study of Three-Dimensional Printed Reconstruction Plates. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. Vol. 78, Iss. 1, pp. 153-166, 2020.
6. Moiduddin, K., Anwar, S., Ahmed, N., Ashfaq, M., and Al-Ahmari, A., Computer Assisted Design and Analysis of Customized Porous Plate for Mandibular Reconstruction. IRBM. Vol. 38, Iss. 2, pp. 78-89, 2017.
7. Atilgan, S., Erol, B., Yardimeden, A., Yaman, F., Ucan, M. C., Gunes, N., Atalay, Y., and Kose, I., A three dimensional analysis of reconstruction plates used in different mandibular defects. Biotechnology & Biotechnological Equipment. Vol. 24, Iss. 2, pp. 1893-1896, 2010.
8. Martola, M., Lindqvist, C., Hänninen, H., and Al-Sukhun, J., Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. Vol. 80, Iss. 2, pp. 345-52, 2007.
9. Depuy Synthes, MANDIBLE FRACTURE FIXATION Alats.
10. Dr.SKY名冠診所。顳顎關節症候群。Available from:
https://drsky.com.tw/temporomandibular_disorders/.
11. Patel, J., Temporalis Muscle. 2023.
12. Levarda, T., Masseter Muscle Pain Treatment. 2024.
13. Chaurasia, B. D., Human Anatomy 7th Edition, MUSCLE OF MASTICATION. 2022.
14. 黃柏誠。台大醫院-健康電子報。車禍臉撞凹變形!?淺談顏面骨骨折。 Available from:
https://epaper.ntuh.gov.tw/health/201908/project_2.html
15. Gómez Roselló, E., Quiles Granado, A. M., Artajona Garcia, M., Juanpere Martí, S., Laguillo Sala, G., Beltrán Mármol, B., and Pedraza Gutiérrez, S., Facial fractures: classification and highlights for a useful report. Insights into Imaging. Vol.11, Iss. 1, pp. 49, 2020.
16. Ludi, E. K., Rohatgi, S., Zygmont, M. E., Khosa, F., and Hanna, T. N., Do Radiologists and Surgeons Speak the Same Language? A Retrospective Review of Facial Trauma. AJR. American Journal of Roentgenol. Vol. 207, Iss. 5, pp. 1070-1076, 2016.
17. 張敏德。利用骨移植手術 重建顎顏面部外傷後的齒槽骨缺損。Available from:
http://www.chimei.org.tw/ePhotoAlbum/files/F08738456722ED71E9C305069CE68D0E.pdf.
18. Gutwald, R., Jaeger, R., and Lambers, F. M., Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Computer Methods in Biomechanics and Biomedical Engineering. Vol. 20, Iss. 4, pp. 426-435, 2017.
19. Lerrick, A.J., and Zak, M. J., Oromandibular reconstruction with simultaneous free and pedicled composite flaps. Operative Techniques in Otolaryngology-Head and Neck Surgery. Vol. 11, Iss. 2, pp. 90-101, 2000.
20. Wilde, F., Cornelius, C. P., and Schramm, A., Computer-Assisted Mandibular Reconstruction using a Patient-Specific Reconstruction Plate Fabricated with Computer-Aided Design and Manufacturing Techniques. Craniomaxillofacial Trauma Reconstruction. Vol. 7, Iss. 2, pp. 158-166, 2014.
21. Edward Ellis III, W. S., locking plate - AO Surgery Reference. Available from:
https://surgeryreference.aofoundation.org/cmf/basic-technique/locking-plate-principles.
22. 林建良。各種鎖定骨板系統介紹。Available from:
http://oplab.im.ntu.edu.tw/vetweb/system/application/views/ContinuingEducation/CE_136.pdf
23. 邱子芬。積層製造重建骨板於下顎骨節段性缺損之力學評估及參數分析。中國醫藥大學牙醫學系,碩士論文,2020。
24. 高銘鴻。探討不同口內骨釘固定方式於雙側矢狀劈開截骨術之穩定。義守大學生物醫學工程學系,碩士論文,2013。
25. Ristow, J., Mead, M., Cordeiro, M., Ostrander, J., Atkinson, T., and Atkinson, P., Pre-bending a dynamic compression plate significantly alters strain distribution near the fracture plane in the mid-shaft femur. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine. Vol. 234, Iss. 5, pp. 478-485, 2020.
26. Parr, W. C. H., Wang, T., Tan, C., Dan, M. J., Walsh, W. R., and Morberg, P., Fatigue implications for bending orthopaedic plates. Injury. Vol. 52, Iss. 10, pp. 2896-2902, 2021.
27. 黃逸岳、陳中和、賴聖宗、陳鴻榮。顎面骨折之臨床研究。The Kaohsiung Journal of Medical Sciences. Vol. 3, Iss. 3, pp.166-175, 1987。
28. 林宏洋、陳遠謙、吳禕凡。以頷後進路方式治療下顎骨髁頭下區骨折。臺灣口腔顎面外科學會雜誌。Vol. 26, Iss. 1, pp.29-43, 2015。
29. Viozzi, C. F., Maxillofacial and Mandibular Fractures in Sports. Clinics in Sports Medicine. Vol. 36, Iss. 2, pp. 355-368, 2017.
30. Chu, L., Gussack, G. S., and Muller, T., A treatment protocol for mandible fractures. Journal of Trauma and Acute Care Surgery. Vol. 36, Iss. 1, pp. 48-52, 1994.
31. Hassanein, A. G., Kukreja, P., and Hassanein, K. A. A. M., Post Tumor Ablation Mandibular Reconstruction: Review Article. Cosmetology & Oro Facial Surgery. Vol 5, Iss. 1, pp.130-145, 2019.
32. Xia, J. J., Shevchenko, L., Gateno, J., Teichgraeber, J. F., Taylor, T. D., Lasky, R. E., English, J. D., Kau, C. H., and McGrory, K. R., Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. Journal of Oral and Maxillofacial Surgery. Vol. 69, Iss. 7, pp. 2014-24, 2011.
33. Stokbro, K., Aagaard, E., Torkov, P., Bell, R. B., and Thygesen, T., Surgical accuracy of three-dimensional virtual planning: a pilot study of bimaxillary orthognathic procedures including maxillary segmentation. International Journal of Oral and Maxillofacial Surgery. Vol. 45, Iss. 1, pp. 8-18, 2016.
34. Hou, J. S., Chen, M., Pan, C. B., Wang, M., Wang, J. G., Zhang, B., Tao, Q., Wang, C., and Huang, H. Z., Application of CAD/CAM-assisted technique with surgical treatment in reconstruction of the mandible. Journal of Cranio-Maxillofacial Surgery. Vol. 40, Iss. 8, pp. e432-e347, 2012.
35. Katsuragi, Y., Kayano, S., Akazawa, S., Nagamatsu, S., Koizumi, T., Matsui, T., Onitsuka, T., Yurikusa, T., Huang, W. C., and Nakagawa, M., Mandible reconstruction using the calcium-sulphate three-dimensional model and rubber stick: a new method, ′mould technique′, for more accurate, efficient and simplified fabrication. Journal of Plastic, Reconstructive & Aesthetic Surgery. Vol. 64, Iss. 5, pp. 614-622, 2011.
36. 王天祥。下顎骨重建手術之缺損空間資訊轉譯。國立中央大學機械工程學系,博士論文,2015。
37. Rendenbach, C., Sellenschloh, K., Gerbig, L., Morlock, M. M., Beck-Broichsitter, B., Smeets, R., Heiland, M., Huber, G., and Hanken, H., CAD-CAM plates versus conventional fixation plates for primary mandibular reconstruction: A biomechanical in vitro analysis. Journal of Cranio-Maxillofacial Surgery. Vol. 45, Iss. 11, pp. 1878-1883, 2017.
38. Zhang, Z. L., Wang, S., Sun, C. F., and Xu, Z. F., Miniplates Versus Reconstruction Plates in Vascularized Osteocutaneous Flap Reconstruction of the Mandible. Journal of Craniofacial Surgery. Vol. 30, Iss. 2, pp. e119-e125, 2019.
39. Probst, F. A., Mast, G., Ermer, M., Gutwald, R., Schmelzeisen, R., Pautke, C., Otto, S., Schiel, S., Ehrenfeld, M., Cornelius, C. P., and Metzger, M. C., MatrixMANDIBLE preformed reconstruction plates--a two-year two-institution experience in 71 patients. Journal of Oral and Maxillofacial Surgery. Vol. 70, Iss. 11, pp. e657-666, 2012.
40. Van-Eijden, T. M., Biomechanics of the mandible. Critical reviews in oral biology & medicine. Vol. 11, Iss. 1, pp. 123-136, 2000.
41. Fütterling, S., Klein, R., Straßer, W., and Weber, H., Automated finite element modeling of a human mandible with dental implants. 1998.
42. Hedeșiu, M., Pavel, D. G., Almășan, O., Pavel, S. G., Hedeșiu, H., and Rafiroiu, D., Three-dimensional finite element analysis on mandibular biomechanics simulation under normal and traumatic conditions. Oral. Vol. 2, Iss. 3, pp. 221-237, 2022.
43. 林慧菁。下顎骨之三維有限元素模型建立與力學分析。國立成功大學機械工程學系,碩士論文,2003。
44. Bujtár, P., Simonovics, J., Váradi, K., Sándor, G. K., and Avery, C. M., The biomechanical aspects of reconstruction for segmental defects of the mandible: a finite element study to assess the optimisation of plate and screw factors. Journal of Cranio-Maxillofacial Surgery, Vol. 42, Iss. 6, pp. 855-862, 2014.
45. Narra, N., Valášek, J., Hannula, M., Marcián, P., Sándor, G. K., Hyttinen, J., and Wolff, J., Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy. Journal of Biomechanics, Vol. 47,Iss. 1, pp. 264-268, 2014.
46. Ramos, A., Completo, A., Relvas, C., Mesnard, M., and Simões, J. A., Straight, semi-anatomic and anatomic TMJ implants: the influence of condylar geometry and bone fixation screws. Journal of Cranio-Maxillofacial Surgery, Vol. 39, Iss. 5, pp. 343-350, 2011.
47. Knoll, W. D., Gaida, A., and Maurer, P., Analysis of mechanical stress in reconstruction plates for bridging mandibular angle defects. Journal of Cranio-Maxillofacial Surgery, Vol. 34, Iss. 4, pp. 201-209, 2006.
48. Giddy, B., and Merwe, J., Parametric Mandible Reconstruction Plate. South African Journal of Industrial Engineering, Vol.31, Iss. 3, pp. 253-261, 2020.
49. Al-Ahmari, A., Nasr, E. A., Moiduddin, K., Anwar, S., Kindi, M. A., and Kamrani, A., A comparative study on the customized design of mandibular reconstruction plates using finite element method. Advances in Mechanical Engineering, Vol. 7, Iss. 7, 2015.
50. Mehle, K., Eckert, A.W., Gentzsch, D., Schwan, S., Ludtka, C., and Knoll, W. Evaluation of a New PEEK Mandibular Reconstruction Plate Design for Continuity Defect Therapy by Finite Element Analysis. International Journal of New Technology and Research. Vol. 2, Iss. 7, 2016.
51. Guerra, R. C., de Fátima Borim Pulino, B., Salomão Júnior, V. F., Dos Santos Pereira, R., Thieringer, F. M., Sacco, R., Sader, R., and Vieira, E. H., Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs. Oral and Maxillofacial Surgery. Vol. 28, Iss. 2, pp. 595-603, 2024.
52. Lieger, O., Schaller, B., Bürki, A., and Büchler, P., Biomechanical evaluation of different angle-stable locking plate systems for mandibular surgery. Journal of Cranio-Maxillofacial Surgery. Vol. 43, Iss. 8, pp. 1589-1594, 2015.
53. Lin, C. L., Wang, Y. T., Chang, C. M., Wu, C. H., and Tsai, W. H., Design Criteria for Patient-specific Mandibular Continuity Defect Reconstructed Implant with Lightweight Structure using Weighted Topology Optimization and Validated with Biomechanical Fatigue Testing. International Journal of Bioprinting. Vol. 8, Iss. 1, pp. 437, 2021.
54. Katakura, A., Shibahara, T., Noma, H., and Yoshinari, M., Material analysis of AO plate fracture cases. Journal of Oral and Maxillofacial Surgery. Vol. 62, Iss. 3, pp. 348-352, 2004.
55. Bohner, L., Beiglboeck, F., Schwipper, S., Lustosa, R. M., Pieirna Marino Segura, C., Kleinheinz, J., and Jung, S., Treatment of mandible fractures using a miniplate system: A retrospective analysis. Journal of Clinical Medicine. Vol. 9, Iss. 9, pp. 2922, 2020.
56. Kucukguven, M. B., and Akkocaoğlu, M., Finite element analysis of stress distribution on reconstructed mandibular models for autogenous bone grafts. Technology and Health Care. Vol. 28, Iss. 3, pp. 249-258, 2020.
57. Wu, C. H., Lin, Y. S., Liu, Y. S., and Lin, C. L., Biomechanical evaluation of a novel hybrid reconstruction plate for mandible segmental defects: A finite element analysis and fatigue testing. Journal of Cranio-Maxillofacial Surgery. Vol. 45, Iss. 10, pp. 1671-1680, 2017.
58. Fuessinger, M. A., Gass, M., Woelm, C., Cornelius, C. P., Zimmerer, R. M., Poxleitner, P., Schlager, S., and Metzger, M. C., Analyzing the fitting of novel preformed osteosynthesis plates for the reduction and fixation of mandibular fractures. Journal of Clinical Medicine. Vol. 10, Iss. 24, pp. 5975, 2021.
59. Ueda, N., Zaizen, M., Imai, Y., and Kirita, T., Measurement of thickness at the inferior border of the mandible using computed tomography images: a retrospective study including 300 Japanese cases. Tomography. Vol. 9, Iss. 4, pp. 1236-1245, 2023.
60. Beaty, N. B., and Le, T. T., Mandibular thickness measurements in young dentate adults. Archives of Otolaryngology–Head & Neck Surgery. Vol. 135, Iss. 9, pp. 920-923, 2009.
61. Kim, H. J., Yu, S. K., Lee, M. H., Lee, H. J., Kim, H. J., and Chung, C. H., Cortical and cancellous bone thickness on the anterior region of alveolar bone in Korean: a study of dentate human cadavers. The Journal of Advanced Prosthodontics. Vol. 4, Iss. 3, pp. 146-152, 2012.
62. Porto, O. C. L., Silva, B. S. F., Silva, J. A., Estrela, C. R. A., Alencar, A. H. G., Bueno, M. D. R., and Estrela, C., CBCT assessment of bone thickness in maxillary and mandibular teeth: an anatomic study. Journal of Applied Oral Science : revista FOB. Vol. 28, pp. e20190148, 2020.
63. Rossi, M., Bruno, G., De Stefani, A., Perri, A., and Gracco, A., Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement. International Orthodontics. Vol. 15, Iss. 4, pp. 610-624, 2017.
64. Susilo, B. T., Sulistyani, L. D., Priaminiarti, M., and Latief, M. A., Mandibular ramus thickness based on cone beam computed tomography scan. In Journal of Physics: Conference Series. Vol.1073, No. 2, pp. 022004, 2018.
65. ASTM E8-21, "Standard Test Method for Tension Test of Metallic Materials", ASTM International, West Conshohocken, PA (2021) www.astm.org.
66. Choi, S. W., Jeong, J. S., Won, J. W., Hong, J. K., and Choi, Y. S., Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation. Journal of Materials Science & Technology. Vol. 66, pp. 193-201, 2021.
67. 許誌文。腿骨二維輪廓點資料之三維網格模型重建。國立中央大學機械工程學系,碩士論文,2008。
68. 陳信豪。二維CT醫學影像之骨頭輪廓自動擷取。國立中央大學機械工程學系,碩士論文,2008。
69. SOLID187. Available from:
https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID187.html
70. Ficquet, X., Bowman, A., Goudar, D., Körner, M., and Kingston, E. J. Measurement of Bending Residual Stress on a Hull Section of a Submarine. In
International Conference on Offshore and Arctic Engineering. Vol. 44939, pp. 117-127, 2012.
71. Zhu, B., Wu, X., Wan, M., Cui, X., Li, H., Li, X., and Shen, L., Effect of Cold Deformation on Microstructure and Mechanical Behavior of Commercially Pure Grade 4 Titanium Strip. Metals. Vol. 12, Iss. 7, pp. 1166, 2022.
72. Duaibis, R., Kusnoto, B., Natarajan, R., Zhao, L., and Evans, C., Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study. The Angle Orthodonist. Vol. 82, Iss. 5, pp. 875-880, 2012.
73. Frost, H. M., Bone "mass" and the "mechanostat": a proposal. The Anatomical Record. Vol. 219, Iss. 1, pp. 1-9. 1987.
74. Biewener, A. A., Safety factors in bone strength. Calcified Tissue International. 53 Suppl 1, S68- S74. 1993.
75. Modeling and remodeling. Available from: https://en.wikipedia.org/wiki/Mechanostat#Modeling_and_remodeling.
76. Mesnard, M., Ramos, A., Ballu, A., Morlier, J., Cid, M., and Simoes, J. A., Biomechanical analysis comparing natural and alloplastic temporomandibular joint replacement using a finite element model. Journal of Oral and Maxillofacial Surgery. Vol. 69, Iss. 1, pp. 1008-1017, 2011.
77. Celebi, N., Rohner, E. C., Gateno, J., Noble, P. C., Ismaily, S. K., Teichgraeber, J. F., and Xia, J. J., Development of a mandibular motion simulator for total joint replacement. Journal of Oral and Maxillofacial Surgery. Vol. 69, Iss. 1, pp. 66-79, 2011.
78. Hoefert, S., and Taier, R., Mechanical stress in plates for bridging reconstruction mandibular defects and purposes of double plate reinforcement.
Journal of Cranio-Maxillofacial Surgery. Vol. 46, Iss. 5, pp. 785-794, 2018.
79. Zhong, S., Shi, Q., Van Dessel, J., Gu, Y., Sun, Y., Yang, S., and Constantinus Politis, Biomechanical validation of structural optimized patient-specific mandibular reconstruction plate orienting additive manufacturing. Computer Methods and Programs in Biomedicine. Vol. 224, pp. 107023, 2022.
80. Narra, N., Valášek, J., Hannula, M., Marcián, P., Sándor, G. K., Hyttinen, J., and Wolff, J., Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy. Journal of Biomechanics. Vol. 47, Iss. 1, pp. 264-268, 2014.
81. Guerra, R. C., de Fátima Borim Pulino, B., Salomão Júnior, V. F., Dos Santos Pereira, R., Thieringer, F. M., Sacco, R., Sader, R., and Vieira, E. H., Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs. Oral and Maxillofacial Surgery. Vol. 28, Iss. 2, pp. 595-603, 2024.
82. Gutwald, R., Jaeger, R., and Lambers, F. M., Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Computer Methods in Biomechanics and Biomedical Engineering. Vol. 20, Iss. 4, pp. 426-435, 2017.
83. 謝豐祺。缺損下顎骨重建手術之有限元素分析。國立成功大學機械工程學系,碩士論文,2009。
84. 黃庭暉。不同下顎體缺損結合顳顎關節切除之下顎重建生物力學探討。義守大學生物醫學工程學系,碩士論文,2013。
85. Vajgel, A., Camargo, I. B., Willmersdorf, R. B., de Melo, T. M., Laureano Filho, J. R., and Vasconcellos, R. J., Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. Journal of Oral and Maxillofacial Surgery. Vol. 71, Iss. 2, pp. 335-42, 2013.
86. Harsha, G., Reddy, S. G., Talasila, S., Salaam, S. A., Srinivasulu, M., and Reddy, V. S., Mandibular reconstruction using AO/ASIF stainless steel reconstruction plate: a retrospective study of 36 cases. The Journal of Contemporary Dental Practice. Vol. 13, Iss. 1, pp. 75-79, 2012.
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明