參考文獻 |
1. 衛生福利部。112年國人死因統計結果。Available from:
https://www.mohw.gov.tw/cp-16-79055-1.html
2. 衛生福利部。檳榔健康危害防制暨口腔癌防治。Available from:
https://www.hpa.gov.tw/Pages/List.aspx?nodeid=204
3. Nagasao, T., Miyamoto, J., Tamaki, T., and Kawana, H., A comparison of stresses in implantation for grafted and plate-and-screw mandible reconstruction. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Endodontics. Vol. 109, Iss. 3, pp. 346-56, 2010.
4. Neelakandan, R. S., and Bhargava, D., Transport distraction along the mandibular midline. International Journal of Stomatology & Occlusion Medicine. Vol. 4, Iss. 3, pp. 123-126, 2011.
5. Almansoori, A. A., Choung, H. W., Kim, B., Park, J. Y., Kim, S. M., and Lee, J. H., Fracture of Standard Titanium Mandibular Reconstruction Plates and Preliminary Study of Three-Dimensional Printed Reconstruction Plates. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. Vol. 78, Iss. 1, pp. 153-166, 2020.
6. Moiduddin, K., Anwar, S., Ahmed, N., Ashfaq, M., and Al-Ahmari, A., Computer Assisted Design and Analysis of Customized Porous Plate for Mandibular Reconstruction. IRBM. Vol. 38, Iss. 2, pp. 78-89, 2017.
7. Atilgan, S., Erol, B., Yardimeden, A., Yaman, F., Ucan, M. C., Gunes, N., Atalay, Y., and Kose, I., A three dimensional analysis of reconstruction plates used in different mandibular defects. Biotechnology & Biotechnological Equipment. Vol. 24, Iss. 2, pp. 1893-1896, 2010.
8. Martola, M., Lindqvist, C., Hänninen, H., and Al-Sukhun, J., Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. Vol. 80, Iss. 2, pp. 345-52, 2007.
9. Depuy Synthes, MANDIBLE FRACTURE FIXATION Alats.
10. Dr.SKY名冠診所。顳顎關節症候群。Available from:
https://drsky.com.tw/temporomandibular_disorders/.
11. Patel, J., Temporalis Muscle. 2023.
12. Levarda, T., Masseter Muscle Pain Treatment. 2024.
13. Chaurasia, B. D., Human Anatomy 7th Edition, MUSCLE OF MASTICATION. 2022.
14. 黃柏誠。台大醫院-健康電子報。車禍臉撞凹變形!?淺談顏面骨骨折。 Available from:
https://epaper.ntuh.gov.tw/health/201908/project_2.html
15. Gómez Roselló, E., Quiles Granado, A. M., Artajona Garcia, M., Juanpere Martí, S., Laguillo Sala, G., Beltrán Mármol, B., and Pedraza Gutiérrez, S., Facial fractures: classification and highlights for a useful report. Insights into Imaging. Vol.11, Iss. 1, pp. 49, 2020.
16. Ludi, E. K., Rohatgi, S., Zygmont, M. E., Khosa, F., and Hanna, T. N., Do Radiologists and Surgeons Speak the Same Language? A Retrospective Review of Facial Trauma. AJR. American Journal of Roentgenol. Vol. 207, Iss. 5, pp. 1070-1076, 2016.
17. 張敏德。利用骨移植手術 重建顎顏面部外傷後的齒槽骨缺損。Available from:
http://www.chimei.org.tw/ePhotoAlbum/files/F08738456722ED71E9C305069CE68D0E.pdf.
18. Gutwald, R., Jaeger, R., and Lambers, F. M., Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Computer Methods in Biomechanics and Biomedical Engineering. Vol. 20, Iss. 4, pp. 426-435, 2017.
19. Lerrick, A.J., and Zak, M. J., Oromandibular reconstruction with simultaneous free and pedicled composite flaps. Operative Techniques in Otolaryngology-Head and Neck Surgery. Vol. 11, Iss. 2, pp. 90-101, 2000.
20. Wilde, F., Cornelius, C. P., and Schramm, A., Computer-Assisted Mandibular Reconstruction using a Patient-Specific Reconstruction Plate Fabricated with Computer-Aided Design and Manufacturing Techniques. Craniomaxillofacial Trauma Reconstruction. Vol. 7, Iss. 2, pp. 158-166, 2014.
21. Edward Ellis III, W. S., locking plate - AO Surgery Reference. Available from:
https://surgeryreference.aofoundation.org/cmf/basic-technique/locking-plate-principles.
22. 林建良。各種鎖定骨板系統介紹。Available from:
http://oplab.im.ntu.edu.tw/vetweb/system/application/views/ContinuingEducation/CE_136.pdf
23. 邱子芬。積層製造重建骨板於下顎骨節段性缺損之力學評估及參數分析。中國醫藥大學牙醫學系,碩士論文,2020。
24. 高銘鴻。探討不同口內骨釘固定方式於雙側矢狀劈開截骨術之穩定。義守大學生物醫學工程學系,碩士論文,2013。
25. Ristow, J., Mead, M., Cordeiro, M., Ostrander, J., Atkinson, T., and Atkinson, P., Pre-bending a dynamic compression plate significantly alters strain distribution near the fracture plane in the mid-shaft femur. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine. Vol. 234, Iss. 5, pp. 478-485, 2020.
26. Parr, W. C. H., Wang, T., Tan, C., Dan, M. J., Walsh, W. R., and Morberg, P., Fatigue implications for bending orthopaedic plates. Injury. Vol. 52, Iss. 10, pp. 2896-2902, 2021.
27. 黃逸岳、陳中和、賴聖宗、陳鴻榮。顎面骨折之臨床研究。The Kaohsiung Journal of Medical Sciences. Vol. 3, Iss. 3, pp.166-175, 1987。
28. 林宏洋、陳遠謙、吳禕凡。以頷後進路方式治療下顎骨髁頭下區骨折。臺灣口腔顎面外科學會雜誌。Vol. 26, Iss. 1, pp.29-43, 2015。
29. Viozzi, C. F., Maxillofacial and Mandibular Fractures in Sports. Clinics in Sports Medicine. Vol. 36, Iss. 2, pp. 355-368, 2017.
30. Chu, L., Gussack, G. S., and Muller, T., A treatment protocol for mandible fractures. Journal of Trauma and Acute Care Surgery. Vol. 36, Iss. 1, pp. 48-52, 1994.
31. Hassanein, A. G., Kukreja, P., and Hassanein, K. A. A. M., Post Tumor Ablation Mandibular Reconstruction: Review Article. Cosmetology & Oro Facial Surgery. Vol 5, Iss. 1, pp.130-145, 2019.
32. Xia, J. J., Shevchenko, L., Gateno, J., Teichgraeber, J. F., Taylor, T. D., Lasky, R. E., English, J. D., Kau, C. H., and McGrory, K. R., Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. Journal of Oral and Maxillofacial Surgery. Vol. 69, Iss. 7, pp. 2014-24, 2011.
33. Stokbro, K., Aagaard, E., Torkov, P., Bell, R. B., and Thygesen, T., Surgical accuracy of three-dimensional virtual planning: a pilot study of bimaxillary orthognathic procedures including maxillary segmentation. International Journal of Oral and Maxillofacial Surgery. Vol. 45, Iss. 1, pp. 8-18, 2016.
34. Hou, J. S., Chen, M., Pan, C. B., Wang, M., Wang, J. G., Zhang, B., Tao, Q., Wang, C., and Huang, H. Z., Application of CAD/CAM-assisted technique with surgical treatment in reconstruction of the mandible. Journal of Cranio-Maxillofacial Surgery. Vol. 40, Iss. 8, pp. e432-e347, 2012.
35. Katsuragi, Y., Kayano, S., Akazawa, S., Nagamatsu, S., Koizumi, T., Matsui, T., Onitsuka, T., Yurikusa, T., Huang, W. C., and Nakagawa, M., Mandible reconstruction using the calcium-sulphate three-dimensional model and rubber stick: a new method, ′mould technique′, for more accurate, efficient and simplified fabrication. Journal of Plastic, Reconstructive & Aesthetic Surgery. Vol. 64, Iss. 5, pp. 614-622, 2011.
36. 王天祥。下顎骨重建手術之缺損空間資訊轉譯。國立中央大學機械工程學系,博士論文,2015。
37. Rendenbach, C., Sellenschloh, K., Gerbig, L., Morlock, M. M., Beck-Broichsitter, B., Smeets, R., Heiland, M., Huber, G., and Hanken, H., CAD-CAM plates versus conventional fixation plates for primary mandibular reconstruction: A biomechanical in vitro analysis. Journal of Cranio-Maxillofacial Surgery. Vol. 45, Iss. 11, pp. 1878-1883, 2017.
38. Zhang, Z. L., Wang, S., Sun, C. F., and Xu, Z. F., Miniplates Versus Reconstruction Plates in Vascularized Osteocutaneous Flap Reconstruction of the Mandible. Journal of Craniofacial Surgery. Vol. 30, Iss. 2, pp. e119-e125, 2019.
39. Probst, F. A., Mast, G., Ermer, M., Gutwald, R., Schmelzeisen, R., Pautke, C., Otto, S., Schiel, S., Ehrenfeld, M., Cornelius, C. P., and Metzger, M. C., MatrixMANDIBLE preformed reconstruction plates--a two-year two-institution experience in 71 patients. Journal of Oral and Maxillofacial Surgery. Vol. 70, Iss. 11, pp. e657-666, 2012.
40. Van-Eijden, T. M., Biomechanics of the mandible. Critical reviews in oral biology & medicine. Vol. 11, Iss. 1, pp. 123-136, 2000.
41. Fütterling, S., Klein, R., Straßer, W., and Weber, H., Automated finite element modeling of a human mandible with dental implants. 1998.
42. Hedeșiu, M., Pavel, D. G., Almășan, O., Pavel, S. G., Hedeșiu, H., and Rafiroiu, D., Three-dimensional finite element analysis on mandibular biomechanics simulation under normal and traumatic conditions. Oral. Vol. 2, Iss. 3, pp. 221-237, 2022.
43. 林慧菁。下顎骨之三維有限元素模型建立與力學分析。國立成功大學機械工程學系,碩士論文,2003。
44. Bujtár, P., Simonovics, J., Váradi, K., Sándor, G. K., and Avery, C. M., The biomechanical aspects of reconstruction for segmental defects of the mandible: a finite element study to assess the optimisation of plate and screw factors. Journal of Cranio-Maxillofacial Surgery, Vol. 42, Iss. 6, pp. 855-862, 2014.
45. Narra, N., Valášek, J., Hannula, M., Marcián, P., Sándor, G. K., Hyttinen, J., and Wolff, J., Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy. Journal of Biomechanics, Vol. 47,Iss. 1, pp. 264-268, 2014.
46. Ramos, A., Completo, A., Relvas, C., Mesnard, M., and Simões, J. A., Straight, semi-anatomic and anatomic TMJ implants: the influence of condylar geometry and bone fixation screws. Journal of Cranio-Maxillofacial Surgery, Vol. 39, Iss. 5, pp. 343-350, 2011.
47. Knoll, W. D., Gaida, A., and Maurer, P., Analysis of mechanical stress in reconstruction plates for bridging mandibular angle defects. Journal of Cranio-Maxillofacial Surgery, Vol. 34, Iss. 4, pp. 201-209, 2006.
48. Giddy, B., and Merwe, J., Parametric Mandible Reconstruction Plate. South African Journal of Industrial Engineering, Vol.31, Iss. 3, pp. 253-261, 2020.
49. Al-Ahmari, A., Nasr, E. A., Moiduddin, K., Anwar, S., Kindi, M. A., and Kamrani, A., A comparative study on the customized design of mandibular reconstruction plates using finite element method. Advances in Mechanical Engineering, Vol. 7, Iss. 7, 2015.
50. Mehle, K., Eckert, A.W., Gentzsch, D., Schwan, S., Ludtka, C., and Knoll, W. Evaluation of a New PEEK Mandibular Reconstruction Plate Design for Continuity Defect Therapy by Finite Element Analysis. International Journal of New Technology and Research. Vol. 2, Iss. 7, 2016.
51. Guerra, R. C., de Fátima Borim Pulino, B., Salomão Júnior, V. F., Dos Santos Pereira, R., Thieringer, F. M., Sacco, R., Sader, R., and Vieira, E. H., Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs. Oral and Maxillofacial Surgery. Vol. 28, Iss. 2, pp. 595-603, 2024.
52. Lieger, O., Schaller, B., Bürki, A., and Büchler, P., Biomechanical evaluation of different angle-stable locking plate systems for mandibular surgery. Journal of Cranio-Maxillofacial Surgery. Vol. 43, Iss. 8, pp. 1589-1594, 2015.
53. Lin, C. L., Wang, Y. T., Chang, C. M., Wu, C. H., and Tsai, W. H., Design Criteria for Patient-specific Mandibular Continuity Defect Reconstructed Implant with Lightweight Structure using Weighted Topology Optimization and Validated with Biomechanical Fatigue Testing. International Journal of Bioprinting. Vol. 8, Iss. 1, pp. 437, 2021.
54. Katakura, A., Shibahara, T., Noma, H., and Yoshinari, M., Material analysis of AO plate fracture cases. Journal of Oral and Maxillofacial Surgery. Vol. 62, Iss. 3, pp. 348-352, 2004.
55. Bohner, L., Beiglboeck, F., Schwipper, S., Lustosa, R. M., Pieirna Marino Segura, C., Kleinheinz, J., and Jung, S., Treatment of mandible fractures using a miniplate system: A retrospective analysis. Journal of Clinical Medicine. Vol. 9, Iss. 9, pp. 2922, 2020.
56. Kucukguven, M. B., and Akkocaoğlu, M., Finite element analysis of stress distribution on reconstructed mandibular models for autogenous bone grafts. Technology and Health Care. Vol. 28, Iss. 3, pp. 249-258, 2020.
57. Wu, C. H., Lin, Y. S., Liu, Y. S., and Lin, C. L., Biomechanical evaluation of a novel hybrid reconstruction plate for mandible segmental defects: A finite element analysis and fatigue testing. Journal of Cranio-Maxillofacial Surgery. Vol. 45, Iss. 10, pp. 1671-1680, 2017.
58. Fuessinger, M. A., Gass, M., Woelm, C., Cornelius, C. P., Zimmerer, R. M., Poxleitner, P., Schlager, S., and Metzger, M. C., Analyzing the fitting of novel preformed osteosynthesis plates for the reduction and fixation of mandibular fractures. Journal of Clinical Medicine. Vol. 10, Iss. 24, pp. 5975, 2021.
59. Ueda, N., Zaizen, M., Imai, Y., and Kirita, T., Measurement of thickness at the inferior border of the mandible using computed tomography images: a retrospective study including 300 Japanese cases. Tomography. Vol. 9, Iss. 4, pp. 1236-1245, 2023.
60. Beaty, N. B., and Le, T. T., Mandibular thickness measurements in young dentate adults. Archives of Otolaryngology–Head & Neck Surgery. Vol. 135, Iss. 9, pp. 920-923, 2009.
61. Kim, H. J., Yu, S. K., Lee, M. H., Lee, H. J., Kim, H. J., and Chung, C. H., Cortical and cancellous bone thickness on the anterior region of alveolar bone in Korean: a study of dentate human cadavers. The Journal of Advanced Prosthodontics. Vol. 4, Iss. 3, pp. 146-152, 2012.
62. Porto, O. C. L., Silva, B. S. F., Silva, J. A., Estrela, C. R. A., Alencar, A. H. G., Bueno, M. D. R., and Estrela, C., CBCT assessment of bone thickness in maxillary and mandibular teeth: an anatomic study. Journal of Applied Oral Science : revista FOB. Vol. 28, pp. e20190148, 2020.
63. Rossi, M., Bruno, G., De Stefani, A., Perri, A., and Gracco, A., Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement. International Orthodontics. Vol. 15, Iss. 4, pp. 610-624, 2017.
64. Susilo, B. T., Sulistyani, L. D., Priaminiarti, M., and Latief, M. A., Mandibular ramus thickness based on cone beam computed tomography scan. In Journal of Physics: Conference Series. Vol.1073, No. 2, pp. 022004, 2018.
65. ASTM E8-21, "Standard Test Method for Tension Test of Metallic Materials", ASTM International, West Conshohocken, PA (2021) www.astm.org.
66. Choi, S. W., Jeong, J. S., Won, J. W., Hong, J. K., and Choi, Y. S., Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation. Journal of Materials Science & Technology. Vol. 66, pp. 193-201, 2021.
67. 許誌文。腿骨二維輪廓點資料之三維網格模型重建。國立中央大學機械工程學系,碩士論文,2008。
68. 陳信豪。二維CT醫學影像之骨頭輪廓自動擷取。國立中央大學機械工程學系,碩士論文,2008。
69. SOLID187. Available from:
https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID187.html
70. Ficquet, X., Bowman, A., Goudar, D., Körner, M., and Kingston, E. J. Measurement of Bending Residual Stress on a Hull Section of a Submarine. In
International Conference on Offshore and Arctic Engineering. Vol. 44939, pp. 117-127, 2012.
71. Zhu, B., Wu, X., Wan, M., Cui, X., Li, H., Li, X., and Shen, L., Effect of Cold Deformation on Microstructure and Mechanical Behavior of Commercially Pure Grade 4 Titanium Strip. Metals. Vol. 12, Iss. 7, pp. 1166, 2022.
72. Duaibis, R., Kusnoto, B., Natarajan, R., Zhao, L., and Evans, C., Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study. The Angle Orthodonist. Vol. 82, Iss. 5, pp. 875-880, 2012.
73. Frost, H. M., Bone "mass" and the "mechanostat": a proposal. The Anatomical Record. Vol. 219, Iss. 1, pp. 1-9. 1987.
74. Biewener, A. A., Safety factors in bone strength. Calcified Tissue International. 53 Suppl 1, S68- S74. 1993.
75. Modeling and remodeling. Available from: https://en.wikipedia.org/wiki/Mechanostat#Modeling_and_remodeling.
76. Mesnard, M., Ramos, A., Ballu, A., Morlier, J., Cid, M., and Simoes, J. A., Biomechanical analysis comparing natural and alloplastic temporomandibular joint replacement using a finite element model. Journal of Oral and Maxillofacial Surgery. Vol. 69, Iss. 1, pp. 1008-1017, 2011.
77. Celebi, N., Rohner, E. C., Gateno, J., Noble, P. C., Ismaily, S. K., Teichgraeber, J. F., and Xia, J. J., Development of a mandibular motion simulator for total joint replacement. Journal of Oral and Maxillofacial Surgery. Vol. 69, Iss. 1, pp. 66-79, 2011.
78. Hoefert, S., and Taier, R., Mechanical stress in plates for bridging reconstruction mandibular defects and purposes of double plate reinforcement.
Journal of Cranio-Maxillofacial Surgery. Vol. 46, Iss. 5, pp. 785-794, 2018.
79. Zhong, S., Shi, Q., Van Dessel, J., Gu, Y., Sun, Y., Yang, S., and Constantinus Politis, Biomechanical validation of structural optimized patient-specific mandibular reconstruction plate orienting additive manufacturing. Computer Methods and Programs in Biomedicine. Vol. 224, pp. 107023, 2022.
80. Narra, N., Valášek, J., Hannula, M., Marcián, P., Sándor, G. K., Hyttinen, J., and Wolff, J., Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy. Journal of Biomechanics. Vol. 47, Iss. 1, pp. 264-268, 2014.
81. Guerra, R. C., de Fátima Borim Pulino, B., Salomão Júnior, V. F., Dos Santos Pereira, R., Thieringer, F. M., Sacco, R., Sader, R., and Vieira, E. H., Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs. Oral and Maxillofacial Surgery. Vol. 28, Iss. 2, pp. 595-603, 2024.
82. Gutwald, R., Jaeger, R., and Lambers, F. M., Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Computer Methods in Biomechanics and Biomedical Engineering. Vol. 20, Iss. 4, pp. 426-435, 2017.
83. 謝豐祺。缺損下顎骨重建手術之有限元素分析。國立成功大學機械工程學系,碩士論文,2009。
84. 黃庭暉。不同下顎體缺損結合顳顎關節切除之下顎重建生物力學探討。義守大學生物醫學工程學系,碩士論文,2013。
85. Vajgel, A., Camargo, I. B., Willmersdorf, R. B., de Melo, T. M., Laureano Filho, J. R., and Vasconcellos, R. J., Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. Journal of Oral and Maxillofacial Surgery. Vol. 71, Iss. 2, pp. 335-42, 2013.
86. Harsha, G., Reddy, S. G., Talasila, S., Salaam, S. A., Srinivasulu, M., and Reddy, V. S., Mandibular reconstruction using AO/ASIF stainless steel reconstruction plate: a retrospective study of 36 cases. The Journal of Contemporary Dental Practice. Vol. 13, Iss. 1, pp. 75-79, 2012. |