參考文獻 |
[1] Transcyko (2011) Transmission machinery. http://www.transcyko-transtec.com/ .Accessed 01.07.2017.
[2] D. Yu: “KHV planetary gearing”, Gear Technology 4.6, pp.21-31, 1987.
[3] L. K. Braren: “Gear transmission”, US Patent 1867492, 1932.
[4] L. K. Braren: “Cycloidal gears”, US Patent 4050331, 1977.
[5] F. L. Litvin, P. Feng: “Computerized design and generation of cycloidal gear”, Mechanism and Machine Theory, Vol.31, Issue.7, pp.891-991, 1996.
https://doi.org/10.1016/0094-114X(95)00115-F
[6] T. S. Lai: “Design and machining of the epicycloid planet gear of cycloid drives”, Journal of Adcanced Manufacturing Technology, Vol.28, pp.665-670, 2006. https://doi.org/10.1007/s00170-004-2423-x
[7] S. L. Chang: “Studies on epitrochoid gear for cycloid drives”, Journal of Mechanics, Vol.19, pp.271-278, 2011.
https://doi.org/10.1017/S1727719100004317
[8] J. G. Blanche, D. C. H. Yang: “Cycloid drives with machining tolerance”, Journal of Mechanisms Transmissions, and Automation in Design, Vol.111, pp.337-344, 1989. https://doi.org/10.1115/1.3259004
[9] J. W. Sensinger: “Unified approach to cycloid drive profile, stress, and efficiency optimization”, Journal of Mechanical Design, Vol.132, 024503 pp.1-5, 2010. https://doi.org/10.1115/1.4000832
[10] B. Borislavov, I. Borisov, V. Panchev: “Design of a planetary-cyclo-drive speed reduver cycloid stage, geometry, elment analyses”, Dissertation, Linnaeus University, Sweden, 2012.
[11] Z. Y. Ren, S. M. Mao, W. C. Guo, Z. Guo: “Tooth modification and dynamic performance of the cycloidal drive”, Mechanical Systems and Signal Processing, Vol.85, pp.857-866, 2017.
https://doi.org/10.1016/j.ymssp.2016.09.029
[12] H. Wang, Z. Y. Shi, B. Yu, H. Xu: “Transmission performance analysis of RV reducers influenced by profile modification and load”, Applied sciences, Vol.9, Issue.19, 4099, 2019. https://doi.org/10.3390/app9194099
[13] T. Li, X. An, X. Deng, J. Li, Y. Li: “A new tooth profile modification method of cycloidal gears in precision reducers for robots”, Applied sciences, Vol.10, Issue.4, 1266, 2020. https://doi.org/10.3390/app10041266
[14] L. C. Chang, S. J. Tsai, C. H. Huang: “A study on tooth profile modification of cycloid planetary gear drive with tooth number difference of two”, Forschung im Ingenieurwesen/Engineering Research, Vol.83, Issue.3 , pp.409-424, 2019.
[15] 黃勁儫,「考量修形、變形與誤差影響下之擺線行星齒輪機構受載接觸特性之研究」,國立中央大學機械工程學系,博士論文,2021。
[16] T. Zhang, X. Li, Y. Wang, L. Sun: “A semi-analytical load distribution model for cycloid drives with tooth profile and longitudinal modifications”, Applied Sciences, Vol.10, Issue.14, 4859, 2020. https://doi.org/10.3390/app10144859
[17] X. Li, L. Tang, H. He, L. Sun: “Design and load distribution analysis of the mismatched cycloid–pin gear pair in RV speed reducers”, Machines,10(8), 672, 2022. https://doi.org/10.3390/machines10080672
[18] D. J. Cao,C. C. Zhu, P. L. Guo, X. S. Du, H. J. Liu: “Dynamic transmission accuracy analysis of a RV reducer rigid-flexible coupled effect”, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Vol.58240, pp.V010T11A013, Cleveland, Ohio, USA, 2017. https://doi.org/10.1115/DETC2017-67063
[19] K. S. Lin, K. Y. Cang, J. J. Lee: “Kinematic error analysis and tolerance allocation of cycloid gear reducers”, Mechanism and Machine Theory, Vol.124, pp.73-91, 2018. https://doi.org/10.1016/j.mechmachtheory.2017.12.028
[20] D. C. H. Yang, J. G. Blanche: “Design and application guidelines for cycloid drives with machining tolerances”, Mechanism and Machine Theory, Vol.25, Issue.5, pp.487-501, 1990. https://doi.org/10.1016/0094-114X(90)90064-Q
[21] T. Hidaka, H. Wang, T. Ishida, K. Matsumoto, M. Hashimoto: “Rotational transmission error of K-H-V-planetary gears with cycloid gear, 1st report, analytical method of the rotational transmission error”, Transactions of JSME, Ser.C, Vol.60, No. 570, pp.645-653, 1994.
[22] 黃薇臻,「考慮主要誤差下具修整齒廓之擺線行星齒輪傳動機構之接觸特性」,國立中央大學機械工程學系,碩士論文,2016。
[23] L. Han, F. Guo: “Global senstivity analysis of transmission accuracy for RV-type cycloid-pin drive”, Journal of Mechanical Science and Technology, Vol.30, pp.1225-1231, 2016. https://doi.org/10.1007/s12206-016-0226-2
[24] 饒瑞萍,「污染場址健康風險評估參數之敏感性分析」,國立中山大學環境工程研究所,碩士論文,2006。
[25] T. Mackic, M. Blagojevic, Z. Babic, N. Kostic: “Influence of design parameters on cycloid drive efficiency”, Journal of the Balkan Tribological Association, Vol.19, No.4, pp.497-507, 2013.
[26] C. Gorla, P. Davoli, F. Rosa, C. Longoni, F. Chiozzi, A. Samarani: “Theoretical and experimental analysis of a cycloidal speed reducer”, Journal of Mechanical Design, Vol.130 (11), 112604 pp.1-8,2008.
https://doi.org/10.1115/1.2978342
[27] S. K. Malhotra, M. A. Parameswaran: “Analysis of a cycloid speed reducer”, Mechanism and Machine Theroy, Vol.18, Issue.6, pp.491-499,1983.
https://doi.org/10.1016/0094-114X(83)90066-6
[28] S. Li: “Design and strength analysis methods of the trochoidal gear reducers”, Mechanism and Machine Theory, Vol.81, pp.140-154, 2014.
https://doi.org/10.1016/j.mechmachtheory.2014.07.001
[29] X. Li, C. Li, Y. Wang, B. Chen, T. C. Lim: “Analysis of a cycloid speed reducer considering tooth profile modification and clearance-fit output mechanism”, Journal of Mechanical Design, Vol.139 (3), 03303 pp.1-12, 2017.
https://doi.org/10.1115/1.4035541
[30] M. Chmurawa, A. John: “FEM in numerical analysis of stress and displacement distributions in planetary wheel of cycloidal gear”, Numerical Analysis and Its Application, Vol.1988, pp.772-779, 2001.
https://doi.org/10.1007/3-540-45262-1_91
[31] 楊舜皓,「考慮軸承撓性及間隙影響下擺線針輪傳動機構之動態負載分析」,國立中央大學機械工程學系,碩士論文,2021。
[32] H. L. Yu, J. H. Yi, X. Hu, P. Shi: “Study on teeth profile modification of cycloid reducer based on non-hertz elastic contact analysis”, Mechanics Research Communicatins, Vol.48, pp.87-92, 2013.
https://doi.org/10.1016/j.mechrescom.2012.12.007
[33] K. H. Kim, C. S. Lee, H. J. Ahn: “Torsional rigidity of a cycloid drive considering finite bearing and hertz contact stiffness”, Proceedings of the ASME 2009 International Design Engineering Technical Conference and Computers and Information in Engineering Conference, pp.125-130, San Diego, California, USA, 2009. https://doi.org/10.1115/DETC2009-87092
[34] 吳思漢,「近似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究」,國立中央大學機械工程學系,博士論文,2009。
[35] S. J. Tsai, C. H. Huang, H. Y. Yeh, W. J. Huang: “Loaded tooth contact analysis of cycloid planetary gear drives”, Proceedings of the 14th IFToMM2015 World Congress, pp.227-234, Taipei, Taiwan 2015.
https://doi.org/10.6567/IFToMM.14TH.WC.OS6.014
[36] S. J. Tsai, W. J. Huang, C. H. Huang : “A computerized approach for load analysis of planetary gear drives with epitrochoid-pin tooth-pairs”, Proceedings VDI International Congerence on Gears, VDI-Berichte 2255.1., pp.307-317, Garching, Munich, Germany, 2015.
[37] C. H. Huang, S. J. Tsai : “A study on loaded tooth contact analysis of a cycloid planetary gear reducer considering friction and bearing roller stiffness”, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.11, Issue.6, pp.JAMDSM0077, 2017.
https://doi.org/10.1299/jamdsm.2017jamdsm0077
[38] C. Liu, W. Shi, L. Xu, K. Liu: “A novel approach ot calculation the transmission accuracy of a cycloid-pin gear pair based on error tooth surface”, Applied sciences, Vol.11, Issue.18 , 8671, 2021.
https://doi.org/10.3390/app11188671
[39] K. Olejarczyk, M. Wikło, K. Kołodziejczyk: “The cycloidal gearbox efficiency for different types of bearings—Sleeves vs. needle bearings”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.223, Issue.21-22, pp.7401-7411, 2019.
https://doi.org/10.1177/0954406219859903
[40] S. Bednarczyk: “Analysis of the cycloidal reducer output mechanism while taking into account machining deviations”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.235, Issue.23, pp.7299-7313, 2021.
https://doi.org/10.1177/09544062211016889
[41] M. Blagojevic, N. Marjanovic, Z. Djordjevic, B. Stojanovic, V. Marjanovic, R. Vujanac, A. Disic: “Numerical and experimental analysis of the cycloid disc stress state”, Tehnički vjesnik-Technical Gazette, Vol.21, No.2, pp.377-382, 2014. https://hrcak.srce.hr/120391
[42] S. W. Hong, V. C. Tong: “Rolling-element bearing modeling: A review”, International Journal of Precision Engineering and Manufacturing, Vol.17, No. 12, pp.1729-1749, 2016. https://doi.org/10.1007/s12541-016-0200-z
[43] P. Ji, Y. Gao, F. Ma, Q. An: “Influence of roller diameter error on contact stress for cylindrical roller bearing”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol.229, Issue.6, pp.689-697, 2015. https://doi.org/10.1177/1350650114559617
[44] T. A. Harris, Rolling bearing analysis, John Wiley and Sons, New York, U.S.A, 2001.
[45] T. A. Harris, M. N. Kotzalas, Essential concepts of bearing technology, Taylor and Francis/ CRC, Boca Raton, FL, 2006.
[46] L. X. Xu, B. K. Chen, C. Y. Li: “Dynamic modeling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers”, Mechanism and Machine Theory, Vol.137, pp.432-458, 2019.
https://doi.org/10.1016/j.mechmachtheory.2019.03.035
[47] E. G. Filetti, J. H. Rumbarger: “A general method for predicting the influence of structural support upon rolling element bearing performance”, Journal of Lubrication Technology, 92 (1), pp.121-127, 1970.
https://doi.org/10.1115/1.3451289
[48] A. Bourdon, J. F. Rigal, D. Play: “Static rolling bearing models in a CAD environment for the study of complex mechanisms: Part II–complete assembly model”, Journal of Tribology, Vol. 121(2), pp.215-223, 1999.
https://doi.org/10.1115/1.2833924
[49] P. Szumiński: “Determination of the stiffness of rolling kinematic pairs of manipulators”, Mechanism and Machine Theory, Vol.42, Issue.9, pp.1082-1102, 2007. https://doi.org/10.1016/j.mechmachtheory.2006.09.009
[50] L. J. Edwin: “Numerical model to study of contact force in a cylindrical roller bearing with technical mechanical event simulation”, Journal of Mechanical Engineering and Automation, 1 (1), pp.1-7, 2011.
[51] S. Kabus, M. R. Hansen, O. Ø. Mouritsen: “A new quasi-static multi-degree of freedom tapered roller bearing model to accurately consider non-hertzian contact pressures in time-domain simulations”, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol.228, Issue.2, pp.111-125, 2014. https://doi.org/10.1177/1464419313513446
[52] L. X. Xu, Y. H. Yang: “Dynamic modeling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing”, Mechanism and Machine Theory, Vol.104, pp.327-349, 2016.
https://doi.org/10.1016/j.mechmachtheory.2016.06.018
[53] J. Huang, C. Li, B. Chen: “Optimization design of RV reducer crankshaft bearing”, Applied Sciences, Vol.10, Issue.18: 6520, 2020.
https://doi.org/10.3390/app10186520
[54] M. Morozumi, S. Kishi: “Efficiency and torque formulas for K-H-V type planetary gear mechanisms”, Journal of the Faculty of Engineering, Shinshu University, No. 56, 1984.
[55] L. Ivanovic, T. Mackic, B. Stojanovic: “Analysis of the instantaneous friction coefficient of the trochoidal gear pair”, Journal of the Balkan Tribological Association, Vol. 22, No.1, pp.281-293, 2016.
https://scidar.kg.ac.rs/handle/123456789/16401
[56] M. Blagojevic, M. Kocic, N. Marjanovic, B. Stojanovic, Z. Dordevic, L. Ivanovic, V. Marjanovic: “Influence of the friction on the cycloidal speed reducer efficiency”, Journal of the Balkan Tribological Association, Vol.18, No.2, pp.217-227, 2012. https://scidar.kg.ac.rs/handle/123456789/16518
[57] K. Olejarczyk, M. Wikło, K. Kołodziejczyk, R. Król, K. Król: “Theoretical and experimental verification of one stage cycloidal gearbox efficiency”, Advances in Mechanism and Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science, Vol. 73, Springer, Cham, pp.1029-1038, 2019.
https://doi.org/10.1007/978-3-030-20131-9_102
[58] G. H. Benedict, B. W. Kelley: “Instantaneous coefficients of gear tooth friction”, ASLE Transaction, Vol.4, Issue.1, pp. 59-70, 1961.
https://doi.org/10.1080/05698196108972420
[59] W. D. He, Q. Lu: “Transmission efficiency analysis of pin-cycloid planetary gearing reducer applying two-stage speed reduction used in propeller pitch variator”, Advanced Materials Research, Vol.199-200, pp. 409-415, 2011.
https://doi.org/10.4028/www.scientific.net/AMR.199-200.409
[60] A. D. Pham, H. J. Ahn: “Efficiency analysis of a cycloid reducer considering tolerance”, Journal of Friction and Wear, Vol.38, No.6, pp.490-496, 2017.
https://doi.org/10.3103/S1068366617060113
[61] A. Mihailidis, E. Athanasopoulos, E. Okkas: “Efficiency of a cycloid reducer”, International Gear Conference, pp.794-803, Lyon Villeurbanne, France, 2014.
[62] A. Mihailidis, E. Athanasopoulos, K. Agouridas: “EHL film thickness and load dependent power loss of cycloid reducers”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.230, Issue.7-8, pp.1303-1317, 2016.
https://doi.org/10.1177/0954406215612815
[63] J. Spałek, M. Kwaśny: “Analysis of the influence of basic constructional parameters on power losses in the meshing of a toothed cylindrical gear”, Quarterly Tribologia, 227 (5), pp.171-178, 2009.
[64] International Organization for Standardization (ISO), “ISO/TS 6336-21: Calculation of load capacity of spur and helical gears — Part 21: Caluclaiton of scuffing load capacity—Integral temperature method”, 2022.
[65] S. Pabiszczak, M. Kowal: “Efficiency of the eccentric rolling transmission”, Mechanism and Machine Theory, Vol.169, 104655, 2022.
https://doi.org/10.1016/j.mechmachtheory.2021.104655
[66] G. Niemann, H. Winter, Maschinenelemente: Band 2: Getriebe allgemein, Zahnradgetriebe-Grundlagen, Strirnradgetriebe, Ch.21, Springer-Verlag, 2013.
[67] V. Koose: “Using hysteresis loop and torsional shock loading to asses damping and efficiency of cyclodrives”, Proceedings of 14th International Congress on Sound Vibration (ICSV 14). International Institute of Acoustics and Vibration (IIAV), pp.1-8, Cairns, Australia, 2007.
[68] M. P. Vasić, M. Matejić, M. Blagojević, “A comparative calculation of cycloid drive effieciency”, Proceedings of the Conference on Mechanical Engineering Technologies and Application, COMETa 2020, East Sarajevo, Vol.12, No.4, pp.259-266, Jahorina, Republic of Srpska, 2020.
https://scidar.kg.ac.rs/handle/123456789/16722
[69] M. Matejic, M. Blagojevic, I. I. Cofaru, N. Kostic, N. Petrovic, N. Marjanovic: “Determining efficiency of cycloid reducers using different calculation methods”, MATEC Web of Conferences, Vol.290, No.01008, 2019.
https://doi.org/10.1051/matecconf/201929001008
[70] M. Matejic, M. Blagojevic, N. Kostic, N. Petrovic, N. Marjanovic: “Efficiency analysis of new two-stage cycloid drvie concept”, Tribology in Industry, Vol.42, No.2, pp.337-343, 2020.
https://scidar.kg.ac.rs/handle/123456789/12960
[71] H.M. Mueller, Die Umlaufgetriebe: auslegung und vielseitige Anwendungen, Vol.28, Springer-Verlag, 2013.
[72] 國光牌極壓機油產品說明書,取自
https://cpclube-ws.cpc.com.tw/001/Upload/435/ebook/ebook_1523/index.html
[73] B. N. J. Persson: “Theory and simulation of sliding friction”, Physical review letters, Vol.71, No.8, pp.1212-1215, 1993.
https://doi.org/10.1103/PhysRevLett.71.1212
[74] J. L. Rodgers, W. A. Nicewander: “Thirteen ways to look at the correlation coefficients”, The American Statistician, Vol.42, Issue.1, pp.59-66, 1988.
https://doi.org/10.1080/00031305.1988.10475524
[75] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in c: The art of scientific computing, Cambridge university press, 2007. |