博碩士論文 111323041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.191.130.149
姓名 林暐翔(Wei-Hsiang Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微電鍍法製備鎳-鋅合金與鎳-鋅/1T相二硫化鉬複合微電極並比較它們在1.0 M KOH之電解產氫性能
(Fabrication of Ni-Zn alloys and 1T-MoS2/Ni-Zn composite Microelectrodes by MAGE and comparison their hydrogen evolution performance in 1.0 M KOH)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-24以後開放)
摘要(中) 本研究以微陽極導引電鍍法製備三維鎳鋅微柱電極,並藉由鋅在鹼性環境下之溶蝕效果藉此增加電極的電化學催化表面積;並利用複合電鍍製備1T相二硫化鉬鑲嵌於鎳鋅合金之中,利用二硫化鉬增加電催化邊緣活性位點以及優化能帶結構等優點,產製1T相二硫化鉬鎳鋅鍍浴之中進行複合電鍍,進而提高電極之產氫活性。
微陽極導引電鍍法中探討不同濃度氯化鎳所析鍍出之鎳鋅合金微柱其成分比例以及電化學產氫效率,並使用水熱合成法製備出金屬相的二硫化鉬,配製成0.16 g/L ~ 0.64 g/L添加至鎳鋅合金鍍液中,在鍍液中固定施加偏壓3.6 V 與間距60 µm進行複合電鍍以獲得最佳產氫效能之二硫化鉬@鎳鋅複合電極。
所製得之微柱由電子顯微鏡觀察表面形貌,以能量散射光譜分析化學組成及以X-ray 結晶繞射測定晶體結構。最終將不同濃度之1T相二硫化鉬鑲嵌於鎳鋅微柱浸泡在1.0 M KOH 溶液中,進行線性掃描伏安法、循環伏安法、有效電化學表面積、計時電位法、交流阻抗頻譜法等電化學測試,探討其產氫性能。上述結果顯示合金複合微柱在二硫化鉬20 at.%、鎳45 at.%、鋅35at.%的情況下其擁有最佳的產氫效率,具有最低之塔弗斜率(Tafel slope = 66 mV/dec)、過電位(η10 = -81 mV)和起始電位(Eonset = -0.66 V vs RHE),其電荷轉移阻抗為3.28 Ω·cm2,其結果顯示析氫反應時所需能量。綜上結果顯示可證實二硫化鉬與鎳鋅合金共鍍可增加活性位點以及加速電荷轉移,使電催化電極具備更佳產氫效能。
摘要(英) This study employs microanode guided electroplating to fabricate three-dimensional nickel-zinc microcolumn electrodes. The electrochemical catalytic surface area of the electrodes is increased through the dissolution effect of zinc in an alkaline environment. Additionally, composite electroplating is used to embed 1T phase molybdenum disulfide (MoS₂) into the nickel-zinc alloy. The MoS₂ enhances the electrocatalytic edge active sites and optimizes the energy band structure, thereby improving the hydrogen evolution activity of the electrode.

The study investigates the composition ratio and electrochemical hydrogen evolution efficiency of nickel-zinc alloy microcolumns deposited with different concentrations of nickel chloride. Metal-phase MoS₂ is synthesized using the hydrothermal method, and a specific concentration is added to the nickel-zinc alloy plating solution. Composite electroplating is performed under a fixed bias of 3.6 V and a spacing of 60 µm to achieve the optimal hydrogen evolution performance of the nickel-zinc/MoS₂ composite electrode.

The microcolumns′ surface morphology is observed using electron microscopy, the chemical composition is analyzed by energy-dispersive spectroscopy, and the crystal structure is determined by X-ray diffraction. Finally, microcolumns embedded with different concentrations of 1T phase MoS₂ are immersed in a 1.0 M KOH solution, and electrochemical tests, including linear sweep voltammetry, cyclic voltammetry, electrochemical surface area measurement, chronopotentiometry, and electrochemical impedance spectroscopy, are conducted to evaluate their hydrogen evolution performance. The results indicate that the alloy composite microcolumns with 20 at.% MoS₂, 45 at.% nickel, and 35 at.% zinc exhibit the best hydrogen evolution efficiency, with the lowest Tafel slope (66 mV/dec), overpotential (η10 = -81 mV), and onset potential (Eonset = -0.66 V vs RHE), and a charge transfer resistance of 3.28 Ω·cm². Overall, the findings confirm that co-depositing MoS₂ with nickel-zinc alloy increases active sites and accelerates charge transfer, enhancing the electrocatalytic electrode′s hydrogen evolution performance.
關鍵字(中) ★ 微陽極導引電鍍法
★ 複合電鍍
★ 鎳鋅合金
★ 二硫化鉬
★ 水熱合成法
★ 析氫反應
關鍵字(英) ★ MAGE
★ Composite electroplating
★ Nickel-Zinc alloys
★ Hydrothermal synthesis
★ Hydrogen evolution reaction(HER)
★ Molybdenum disulfide
★ Microcolumns array
論文目次 摘要 i
Abstract iii
致謝 v
表目錄 f
圖目錄 j
第一章、前言 1
1.1研究背景 1
1.1.1能源與工業革命 1
1.1.2第三次能源革命 2
1.2氫能源 2
1.2.1氫能經濟價值 2
1.2.2氫能生產概況 5
1.3研究動機 5
第二章、文獻回顧 8
2.1綠氫 8
2.2電解水產氫原理 9
2.2.1鹼性水電解產氫 9
2.2.2火山圖 10
2.3微陽極導引電鍍法之發展歷程 12
2.4電鍍 16
2.4.1合金電鍍 16
2.4.2 Ni-Zn異常共鍍 17
2.4.3複合電鍍 19
2.5過渡金屬硫化物 21
2.5.1過渡金屬硫化物 21
2.5.2過渡金屬硫化物之產氫應用 23
2.6二硫化鉬 25
2.6.1金屬相二硫化鉬合成方式 25
2.6.2合成方式(插層類) 25
2.6.3合成方式(成長類) 27
第三章、實驗方法 29
3.1實驗流程 29
3.2微陽極與陰極製備 30
3.3微陽極導引電鍍機台與實驗設備 31
3.4水熱合成法 32
3.5鍍液配置 35
3.6金微柱之表面形貌與成分以及晶體結構分析 37
3.6.1 SEM表面形貌觀測 37
3.6.2 EDS成分分析 37
3.6.3 XRD晶體結構分析 37
3.7奈米壓痕機械性質分析 37
3.8析氫效能之電化學測試 39
3.9線性掃描伏安法 41
3.9.1 過電位 41
3.9.2 塔弗斜率 42
3.10循環伏安法 43
3.11計時電位法 44
3.12電化學阻抗圖譜分析 44
3.13排水集氣法 46
3.14 4×4之陣列產氧 47
3.15拉曼光譜分析 48
3.16微柱之XPS表面元素及價態分析 51
第四章、結果與討論 53
4.1探討鍍浴中氯化鎳濃度變化對合金微柱之影響 53
4.1.1鎳鋅微柱之表面形貌 53
4.2.2鎳鋅微柱組成成分分析 57
4.2.3鎳鋅微柱之晶體結構分析 60
4.2二硫化鉬粉末分析 63
4.2.1 XRD晶體結構分析 63
4.2.2二硫化鉬之Raman光譜鑑定 64
4.2.3 SEM表面形貌分析 65
4.2.4二硫化鉬@鎳鋅鍍液之Zeta電位分析 68
4.2.5二硫化鉬@鎳鋅鍍液之二硫化鉬粒徑分析 70
4.3探討二硫化鉬濃度變化對複合微柱之影響 71
4.3.1二硫化鉬@鎳鋅微柱表面形貌 71
4.3.2二硫化鉬@鎳鋅微柱組成成分分析 73
4.3.3二硫化鉬@鎳鋅微柱之晶體結構分析 77
4.3.4二硫化鉬@鎳鋅微柱之顯微結構分析 78
4.3.5二硫化鉬@鎳鋅微柱之機械性質分析 80
4.4二硫化鉬@鎳鋅、鎳鋅微柱之電化學產氫分析 83
4.4.1線性掃描伏安法(鎳鋅微柱) 83
4.4.2線性掃描伏安法(二硫化鉬@鎳鋅微柱) 87
4.4.3循環伏安法(鎳鋅微柱) 91
4.4.4循環伏安法(二硫化鉬@鎳鋅微柱) 95
4.4.5電化學活性表面積 100
4.4.6計時電位法 105
4.4.7電化學阻抗圖譜 109
4.4.8本文獻與其他文獻之產氫效能比較 113
4.5最佳產氫效能微柱之表面分析 115
4.6二硫化鉬@鎳鋅微柱之定電流氫氣蒐集 122
4.7二硫化鉬@鎳鋅微柱之4×4陣列產氫性能 125
第五章、 結論與未來展望 126
參考文獻 128
參考文獻 [1] J.A. Gowlett, The discovery of fire by humans: a long and convoluted process, Philosophical Transactions of the Royal Society B: Biological Sciences, 371 (2016) 20150164.
[2] N. Wilterdink, Goudsblom′s Law of Three Stages, Historical Social Research/Historische Sozialforschung, 48 (2023) 84-104.
[3] V. Smil, World history and energy, Encyclopedia of energy, 6 (2004).
[4] E.A. Wrigley, Energy and the English industrial revolution, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 (2013) 20110568.
[5] J. Rifkin, How the third industrial revolution will create a green economy, New Persp. Q., 33 (2016) 6.
[6] C. Zou, Q. Zhao, G. Zhang, B. Xiong, Energy revolution: From a fossil energy era to a new energy era, Natural Gas Industry B, 3 (2016) 1-11.
[7] H. Geller, Energy revolution: policies for a sustainable future, Island Press2012.
[8] K.M. Keramitsoglou, R.C. Mellon, M.I. Tsagkaraki, K.P. Tsagarakis, Clean, not green: The effective representation of renewable energy, Renewable and Sustainable Energy Reviews, 59 (2016) 1332-1337.
[9] N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and sustainable energy reviews, 15 (2011) 1513-1524.
[10] F. Dawood, M. Anda, G. Shafiullah, Hydrogen production for energy: An overview, International Journal of Hydrogen Energy, 45 (2020) 3847-3869.
[11] H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, International Journal of Hydrogen Energy, 47 (2022) 26238-26264.
[12] M. Younas, S. Shafique, A. Hafeez, F. Javed, F. Rehman, An overview of hydrogen production: current status, potential, and challenges, Fuel, 316 (2022) 123317.
[13] G. UK, British energy security strategy, 2022.
[14] G. Energy, Net Zero by 2050.
[15] S.E. Hosseini, Hydrogen Diplomacy, Future Publishing LLC2024.
[16] T. Van de Graaf, I. Overland, D. Scholten, K. Westphal, The new oil? The geopolitics and international governance of hydrogen, Energy Research & Social Science, 70 (2020) 101667.
[17] H. Council, Hydrogen insights 2022, (2022).
[18] C.C. Elam, C.E.G. Padró, G. Sandrock, A. Luzzi, P. Lindblad, E.F. Hagen, Realizing the hydrogen future: the International Energy Agency′s efforts to advance hydrogen energy technologies, International Journal of Hydrogen Energy, 28 (2003) 601-607.
[19] R.K. Dixon, Advancing towards a hydrogen energy economy: status, opportunities and barriers, Mitigation and Adaptation Strategies for Global Change, 12 (2007) 325-341.
[20] H.-J. Neef, International overview of hydrogen and fuel cell research, Energy, 34 (2009) 327-333.
[21] S. Anwar, F. Khan, Y. Zhang, A. Djire, Recent development in electrocatalysts for hydrogen production through water electrolysis, International Journal of Hydrogen Energy, 46 (2021) 32284-32317.
[22] S. Shibli, J. Sebeelamol, Development of Fe2O3–TiO2 mixed oxide incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction, International journal of hydrogen energy, 38 (2013) 2271-2282.
[23] I. Herraiz-Cardona, E. Ortega, J.G. Antón, V. Pérez-Herranz, Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits, International journal of hydrogen energy, 36 (2011) 9428-9438.
[24] L. Chen, A. Lasia, Study of the kinetics of hydrogen evolution reaction on nickel‐zinc powder electrodes, Journal of the Electrochemical Society, 139 (1992) 3214.
[25] W.F. Chen, K. Sasaki, C. Ma, A.I. Frenkel, N. Marinkovic, J.T. Muckerman, Y. Zhu, R.R. Adzic, Hydrogen‐evolution catalysts based on non‐noble metal nickel–molybdenum nitride nanosheets, Angewandte Chemie International Edition, 51 (2012) 6131-6135.
[26] E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, Journal of the American Chemical Society, 135 (2013) 9267-9270.
[27] Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nature communications, 5 (2014) 3783.
[28] B.R. Sathe, X. Zou, T. Asefa, Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction, Catalysis science & technology, 4 (2014) 2023-2030.
[29] R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets, Accounts of chemical research, 48 (2015) 56-64.
[30] U. Gupta, C. Rao, Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides, Nano Energy, 41 (2017) 49-65.
[31] V. Panchenko, Y.V. Daus, A. Kovalev, I. Yudaev, Y.V. Litti, Prospects for the production of green hydrogen: Review of countries with high potential, International Journal of Hydrogen Energy, 48 (2023) 4551-4571.
[32] Y. Zhou, R. Li, Z. Lv, J. Liu, H. Zhou, C. Xu, Green hydrogen: A promising way to the carbon-free society, Chinese Journal of Chemical Engineering, 43 (2022) 2-13.
[33] Q. Hassan, A.M. Abdulateef, S.A. Hafedh, A. Al-samari, J. Abdulateef, A.Z. Sameen, H.M. Salman, A.K. Al-Jiboory, S. Wieteska, M. Jaszczur, Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation, International Journal of Hydrogen Energy, (2023).
[34] E. Taibi, R. Miranda, M. Carmo, H. Blanco, Green hydrogen cost reduction, (2020).
[35] W.W. Clark II, J. Rifkin, A green hydrogen economy, Energy Policy, 34 (2006) 2630-2639.
[36] J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles, Chemical reviews, 120 (2019) 851-918.
[37] A. Alobaid, C. Wang, R.A. Adomaitis, Mechanism and Kinetics of HER and OER on NiFe LDH Films in an Alkaline Electrolyte, Journal of The Electrochemical Society, 165 (2018) J3395-J3404.
[38] N. Krstajić, M. Popović, B. Grgur, M. Vojnović, D. Šepa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism, Journal of Electroanalytical Chemistry, 512 (2001) 16-26.
[39] A.P. Murthy, J. Theerthagiri, J. Madhavan, Insights on Tafel constant in the analysis of hydrogen evolution reaction, The Journal of Physical Chemistry C, 122 (2018) 23943-23949.
[40] H. Tüysüz, Alkaline Water Electrolysis for Green Hydrogen Production, Accounts of Chemical Research, (2024) 697-710.
[41] H. Ooka, J. Huang, K.S. Exner, The sabatier principle in electrocatalysis: Basics, limitations, and extensions, Frontiers in Energy Research, 9 (2021) 654460.
[42] A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Nørskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, Journal of Catalysis, 328 (2015) 36-42.
[43] S. Hu, W.-X. Li, Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts, Science, 374 (2021) 1360-1365.
[44] 張嘉文, 雙金屬鉑鈀及三金屬鉑鈀基奈米團簇觸媒應用 於析氫反應之研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2020, pp. 92.
[45] 潘岷遠, 低負載量之鉑基奈米團簇 應用於析氫反應之研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2020, pp. 65.
[46] J. Tang, J. Huang, D. Ding, S. Zhang, X. Deng, Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution, International Journal of Hydrogen Energy, 47 (2022) 39771-39795.
[47] J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Chakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials, Acs Catalysis, 4 (2014) 3957-3971.
[48] 游睿為, 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析, 機械工程研究所, 國立中央大學, 桃園縣, 2001, pp. 202.
[49] 葉柏青, 微陽極引導電鍍與監測, 機械工程研究所, 國立中央大學, 桃園縣, 2003, pp. 147.
[50] 賴格源, 微陽極導引電鍍銅其組織及底部覆蓋範圍之探討, 機械工程研究所, 國立中央大學, 桃園縣, 2006, pp. 157.
[51] 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, 機械工程研究所, 國立中央大學, 桃園縣, 2005, pp. 151.
[52] 楊仁泓, 微陽極導引電鍍法製備微析物之局部電場強度分析, 機械工程研究所, 國立中央大學, 桃園縣, 2009, pp. 107.
[53] 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, 機械工程學系, 國立中央大學, 桃園縣, 2015, pp. 97.
[54] X. Guan, 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, 機械工程學系, 國立中央大學, 桃園縣, 2019, pp. 101.
[55] 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, 應用材料科學國際研究生碩士學位學程, 國立中央大學, 桃園縣, 2020, pp. 75.
[56] 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 177.
[57] 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 161.
[58] 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2022, pp. 170.
[59] 楊政諭, 以微電鍍法製備鎳鈷鐵、鎳鈷鐵鉻合金及其在鹼性環境中之產氧反應行為研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2023, pp. 137.
[60] 賴宗群, 以MAGE製備鈷鐵、鈷鐵鉻合金微柱,並探討其在1.0 M KOH中之電解析氧性能, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2023, pp. 149.
[61] D. Landolt, Fundamental aspects of alloy plating, Plating and surface finishing, 88 (2001) 70-70.
[62] D. Landolt, Electrochemical and materials science aspects of alloy deposition, Electrochimica Acta, 39 (1994) 1075-1090.
[63] J. Roos, J.-P. Celis, J. Fransaer, C. Buelens, The development of composite plating for advanced materials, Jom, 42 (1990) 60-63.
[64] A. Brenner, Electrodeposition of alloys: principles and practice, Elsevier2013.
[65] E. McCafferty, Standard electrode potentials of the elements as a fundamental periodic property of atomic number, Electrochimica acta, 52 (2007) 5884-5890.
[66] Y. Zhuang, E. Podlaha, NiCoFe ternary alloy deposition: I. an experimental kinetic study, Journal of the Electrochemical Society, 147 (2000) 2231.
[67] N. Zaki, Zinc alloy plating, (1994).
[68] E. Gileadi, N. Eliaz, The mechanism of induced codeposition of Ni-W alloys, ECS Transactions, 2 (2007) 337.
[69] E. Podlaha, D. Landolt, Induced codeposition: I. An experimental investigation of Ni‐Mo alloys, Journal of the Electrochemical Society, 143 (1996) 885.
[70] S. Sun, T. Bairachna, E. Podlaha, Induced codeposition behavior of electrodeposited NiMoW alloys, Journal of the Electrochemical Society, 160 (2013) D434.
[71] H. FUKUSHIMA, T. AKIYAMA, Electrodeposition Behavior of Secondary Element in the Presence of Zinc Ions, Journal of The Surface Finishing Society of Japan, 41 (1990) 888-893.
[72] A. Bard, Standard potentials in aqueous solution, Routledge2017.
[73] Z. Zhou, T. O′keefe, Modification of anomalous deposition of Zn-Ni alloy by using tin additions, Surface and Coatings Technology, 96 (1997) 191-197.
[74] Y. Addi, A. Khouider, Electrodeposition of Ni-Zn alloys on steel from acidic solution in presence of boric acid, ECS Transactions, 45 (2013) 79.
[75] J.L. Valdes, Electrodeposition of colloidal particles, Journal of the Electrochemical Society, 134 (1987) 223C.
[76] N. Guglielmi, Kinetics of the deposition of inert particles from electrolytic baths, Journal of the Electrochemical Society, 119 (1972) 1009.
[77] J.-P. Celis, J. Roos, C. Buelens, A mathematical model for the electrolytic codeposition of particles with a metallic matrix, Journal of the Electrochemical Society, 134 (1987) 1402.
[78] J.L. Stojak, J. Fransaer, J.B. Talbot, Review of electrocodeposition, Advances in electrochemical science and engineering, 7 (2002) 193-224.
[79] B. Łosiewicz, Electrodeposition mechanism of composite coatings, Solid State Phenomena, 228 (2015) 65-78.
[80] F.C. Walsh, S. Wang, N. Zhou, The electrodeposition of composite coatings: Diversity, applications and challenges, Current Opinion in Electrochemistry, 20 (2020) 8-19.
[81] 吳瑋榤, 結合微放電與複合電鍍沉積之精微加工研究, 機械工程研究所, 國立中央大學, 桃園縣, 2006, pp. 75.
[82] S. Poorahong, R. Izquierdo, M. Siaj, An efficient porous molybdenum diselenide catalyst for electrochemical hydrogen generation, Journal of materials chemistry A, 5 (2017) 20993-21001.
[83] L. Zhang, T. Wang, L. Sun, Y. Sun, T. Hu, K. Xu, F. Ma, Hydrothermal synthesis of 3D hierarchical MoSe 2/NiSe 2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction, Journal of materials chemistry A, 5 (2017) 19752-19759.
[84] Y. Cheng, S. Lu, F. Liao, L. Liu, Y. Li, M. Shao, Rh MoS2 Nanocomposite Catalysts with Pt‐Like Activity for Hydrogen Evolution Reaction, Advanced Functional Materials, 27 (2017) 1700359.
[85] M. Habib, A. Khalil, Z. Muhammad, R. Khan, C. Wang, Z. ur Rehman, H.T. Masood, W. Xu, H. Liu, W. Gan, WX2 (X= S, Se) single crystals: a highly stable material for supercapacitor applications, Electrochimica Acta, 258 (2017) 71-79.
[86] J. Li, H. Hu, F. Qin, P. Zhang, L. Zou, H. Wang, K. Zhang, Y. Lai, Flower‐like MoSe2/C Composite with Expanded (0 0 2) Planes of Few‐layer MoSe2 as the Anode for High‐Performance Sodium‐Ion Batteries, Chemistry–A European Journal, 23 (2017) 14004-14010.
[87] H. Huang, X. Fan, D.J. Singh, W. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications, Nanoscale, 12 (2020) 1247-1268.
[88] L. Chang, Z. Sun, Y.H. Hu, 1T phase transition metal dichalcogenides for hydrogen evolution reaction, Electrochemical Energy Reviews, 4 (2021) 194-218.
[89] N. Abidi, A. Bonduelle-Skrzypczak, S.N. Steinmann, How stable are 2H-MoS2 edges under hydrogen evolution reaction conditions?, The Journal of Physical Chemistry C, 125 (2021) 17058-17067.
[90] S. Chen, Y. Pan, Mechanism of interlayer spacing on catalytic properties of MoS2 from ab-initio calculation, Applied Surface Science, 599 (2022) 154041.
[91] Z. Liu, L. Zhao, Y. Liu, Z. Gao, S. Yuan, X. Li, N. Li, S. Miao, Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution, Applied Catalysis B: Environmental, 246 (2019) 296-302.
[92] Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale, J. Huang, X. He, W. Bian, S. Younan, N. Williams, Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution, Nature communications, 10 (2019) 982.
[93] Q. Liu, X. Li, Q. He, A. Khalil, D. Liu, T. Xiang, X. Wu, L. Song, Gram‐scale aqueous synthesis of stable few‐layered 1T‐MoS2: applications for visible‐light‐driven photocatalytic hydrogen evolution, Small, 11 (2015) 5556-5564.
[94] L. Cai, W. Cheng, T. Yao, Y. Huang, F. Tang, Q. Liu, W. Liu, Z. Sun, F. Hu, Y. Jiang, High-content metallic 1T phase in MoS2-based electrocatalyst for efficient hydrogen evolution, The Journal of Physical Chemistry C, 121 (2017) 15071-15077.
[95] Q. Tang, D.-e. Jiang, Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles, Acs Catalysis, 6 (2016) 4953-4961.
[96] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, Journal of the American Chemical Society, 135 (2013) 10274-10277.
[97] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, Nature materials, 12 (2013) 850-855.
[98] L. Wu, N.Y. Dzade, M. Yu, B. Mezari, A.J. Van Hoof, H. Friedrich, N.H. De Leeuw, E.J. Hensen, J.P. Hofmann, Unraveling the role of lithium in enhancing the hydrogen evolution activity of MoS2: Intercalation versus adsorption, ACS energy letters, 4 (2019) 1733-1740.
[99] J. Zou, F. Li, M.A. Bissett, F. Kim, L.J. Hardwick, Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes, Electrochimica Acta, 331 (2020) 135284.
[100] B. Radisavljevic, A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2, Nature materials, 12 (2013) 815-820.
[101] Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N.J. Halas, P. Nordlander, P.M. Ajayan, J. Lou, Plasmonic hot electron induced structural phase transition in a MoS2 monolayer, Advanced materials (Deerfield Beach, Fla.), 26 (2014) 6467-6471.
[102] W. Ding, L. Hu, J. Dai, X. Tang, R. Wei, Z. Sheng, C. Liang, D. Shao, W. Song, Q. Liu, Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields, ACS nano, 13 (2019) 1694-1702.
[103] R. Sukanya, D.C. da Silva Alves, C.B. Breslin, Recent developments in the applications of 2D transition metal dichalcogenides as electrocatalysts in the generation of hydrogen for renewable energy conversion, Journal of The Electrochemical Society, 169 (2022) 064504.
[104] A. Mondal, A. Vomiero, 2D transition metal dichalcogenides‐based electrocatalysts for hydrogen evolution reaction, Advanced Functional Materials, 32 (2022) 2208994.
[105] S. Shi, Z. Sun, Y.H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS 2, Journal of Materials Chemistry A, 6 (2018) 23932-23977.
[106] M. Py, R. Haering, Structural destabilization induced by lithium intercalation in MoS2 and related compounds, Canadian Journal of Physics, 61 (1983) 76-84.
[107] X. Ren, Q. Zhao, W.D. McCulloch, Y. Wu, MoS 2 as a long-life host material for potassium ion intercalation, Nano Research, 10 (2017) 1313-1321.
[108] J. Strachan, A.F. Masters, T. Maschmeyer, Critical review: hydrothermal synthesis of 1T-MoS 2–an important route to a promising material, Journal of Materials Chemistry A, 9 (2021) 9451-9461.
[109] S. Palencia-Ruiz, D. Uzio, C. Legens, D. Laurenti, P. Afanasiev, Stability and catalytic properties of 1T-MoS2 obtained via solvothermal synthesis, Applied Catalysis A: General, 626 (2021) 118355.
[110] G. Wang, G. Zhang, X. Ke, X. Chen, X. Chen, Y. Wang, G. Huang, J. Dong, S. Chu, M. Sui, Direct Synthesis of Stable 1T‐MoS2 Doped with Ni Single Atoms for Water Splitting in Alkaline Media, Small, 18 (2022) 2107238.
[111] Á. Coogan, Y.K. Gun′ko, Solution-based “bottom-up” synthesis of group VI transition metal dichalcogenides and their applications, Materials Advances, 2 (2021) 146-164.
[112] H. Akram, O. Achak, T. Chafik, Subcritical hydrothermal synthesis of amorphous molybdenum disulfide spheres, Journal of Chemical Research, 44 (2020) 738-743.
[113] A. Ates, G. Azimi, K.-H. Choi, W.H. Green, M.T. Timko, The role of catalyst in supercritical water desulfurization, Applied Catalysis B: Environmental, 147 (2014) 144-155.
[114] H. Wang, L. Zhu, B. Xu, Residual stresses and nanoindentation testing of films and coatings, Springer2018.
[115] 蔡卿銘, 電位式二氧化碳感測元件單晶化之研究及改進, 電子物理系所, 國立交通大學, 新竹市, 2009, pp. 44.
[116] B. Ren, M. Wang, J. Liu, J. Ge, H. Dong, Enhanced basicity of Ag2O by coordination to soft anions, ChemCatChem, 7 (2015) 761-765.
[117] M.G. De Chialvo, A. Chialvo, The polarisation resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects, Journal of Electroanalytical Chemistry, 415 (1996) 97-106.
[118] K. Kakaei, M.D. Esrafili, A. Ehsani, Graphene and anticorrosive properties, Interface science and technology, Elsevier2019, pp. 303-337.
[119] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of chemical education, 95 (2018) 197-206.
[120] P. Chooto, Cyclic voltammetry and its applications, Voltammetry. IntechOpen, (2019) 1.
[121] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, Journal of chemical education, 60 (1983) 702.
[122] J. Wang, F. Ciucci, In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction, Applied Catalysis B: Environmental, 254 (2019) 292-299.
[123] F. Walsh, Faraday and his laws of electrolysis: An appreciation, Bulletin of Electrochemistry, 7 (1992) 481-484.
[124] S.P. Mulvaney, C.D. Keating, Raman spectroscopy, Analytical Chemistry, 72 (2000) 145-158.
[125] A. Kudelski, Analytical applications of Raman spectroscopy, Talanta, 76 (2008) 1-8.
[126] E. Smith, G. Dent, Modern Raman spectroscopy: a practical approach, John Wiley & Sons2019.
[127] B. Hu, P. Chen, C. Xu, J. Meng, J. Cai, Y. Yang, B. Zhang, D. Yu, X. Zhou, C. Chen, Hierarchical leaf-shaped Ni@ Zn bimetallic catalyst with high stability and selectivity for borohydride oxidation, Applied Catalysis B: Environmental, 307 (2022) 121183.
[128] H. Yang, X. Guo, X. Chen, S. Wang, G. Wu, W. Ding, N. Birbilis, On the electrodeposition of nickel–zinc alloys from a eutectic-based ionic liquid, Electrochimica Acta, 63 (2012) 131-138.
[129] H. Li, X. Han, S. Jiang, L. Zhang, W. Ma, R. Ma, Z. Zhou, Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution, Green Energy & Environment, 7 (2022) 314-323.
[130] B. Sheng, J. Liu, Z. Li, M. Wang, K. Zhu, J. Qiu, J. Wang, Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis, Materials Letters, 144 (2015) 153-156.
[131] Y.C. Chen, A.Y. Lu, P. Lu, X. Yang, C.M. Jiang, M. Mariano, B. Kaehr, O. Lin, A. Taylor, I.D. Sharp, Structurally deformed MoS2 for electrochemically stable, thermally resistant, and highly efficient hydrogen evolution reaction, Advanced Materials, 29 (2017) 1703863.
[132] A. Loiácono, M.J. Gómez, E.A. Franceschini, G.I. Lacconi, Enhanced Hydrogen Evolution Activity of Ni [MoS 2] Hybrids in Alkaline Electrolyte, Electrocatalysis, 11 (2020) 309-316.
[133] Y. Tan, R. Zhuang, G. Yang, X. Tao, H. Chen, Y. Ouyang, Y. Du, Diffusional behaviors and mechanical properties of Ni-Zn system, Journal of Alloys and Compounds, 881 (2021) 160581.
[134] A. Gana, H. Ben Temam, F. Lekmine, M. Naoun, O. Herzallah, Characterization of electrodeposited Ni-MoS 2 composite coatings under the influence of current density, Digest Journal of Nanomaterials & Biostructures (DJNB), 16 (2021).
[135] F. Ganci, B. Buccheri, B. Patella, E. Cannata, G. Aiello, P. Mandin, R. Inguanta, Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer, International Journal of Hydrogen Energy, 47 (2022) 11302-11315.
[136] X. Geng, W. Wu, N. Li, W. Sun, J. Armstrong, A. Al‐hilo, M. Brozak, J. Cui, T.p. Chen, Three‐dimensional structures of MoS2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction, Advanced Functional Materials, 24 (2014) 6123-6129.
[137] D. Mosconi, P. Till, L. Calvillo, T. Kosmala, D. Garoli, D. Debellis, A. Martucci, S. Agnoli, G. Granozzi, Effect of Ni doping on the MoS2 structure and its hydrogen evolution activity in acid and alkaline electrolytes, Surfaces, 2 (2019) 531-545.
[138] W. Wu, C. Niu, C. Wei, Y. Jia, C. Li, Q. Xu, Activation of MoS2 basal planes for hydrogen evolution by zinc, Angewandte Chemie International Edition, 58 (2019) 2029-2033.
[139] M. Ábel, J. Záchenská, E. Dobročka, M. Zemanová, Electrocatalytic properties of pulse plated Ni-W alloy coatings in alkaline electrolytes, Transactions of the IMF, 99 (2021) 23-28.
[140] S. Shetty, M.M.J. Sadiq, D.K. Bhat, A.C. Hegde, Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis, Journal of Electroanalytical Chemistry, 796 (2017) 57-65.
[141] Y. Sürme, A.A. Gürten, K. Kayakırılmaz, Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution, Metals and Materials International, 19 (2013) 803-812.
[142] I.A. Raj, Nickel based composite electrolytic surface coatings as electrocatalysts for the cathodes in the energy efficient industrial production of hydrogen from alkaline water electrolytic cells, International journal of hydrogen energy, 17 (1992) 413-421.
[143] A. Laszczyńska, I. Szczygieł, Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings, International Journal of Hydrogen Energy, 45 (2020) 508-520.
[144] Y. Feng, T. Zhang, J. Zhang, H. Fan, C. He, J. Song, 3D 1T‐MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction, Small, 16 (2020) 2002850.
[145] Q. Zhou, Q. Hao, Y. Li, J. Yu, C. Xu, H. Liu, S. Yan, Free-standing trimodal porous NiZn intermetallic and Ni heterojunction as highly efficient hydrogen evolution electrocatalyst in the alkaline electrolyte, Nano Energy, 89 (2021) 106402.
[146] Q. Zhou, Z. Wang, H. Yuan, J. Wang, H. Hu, Rapid hydrogen adsorption-desorption at sulfur sites via an interstitial carbon strategy for efficient HER on MoS2, Applied Catalysis B: Environmental, 332 (2023) 122750.
[147] B. Chen, P. Hu, F. Yang, X. Hua, F.F. Yang, F. Zhu, R. Sun, K. Hao, K. Wang, Z. Yin, In situ porousized MoS2 nano islands enhance HER/OER bifunctional electrocatalysis, Small, 19 (2023) 2207177.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明