博碩士論文 109323100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.133.124.123
姓名 李育成(Yu-Cheng Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電腦輔助協同模擬高接觸率正齒輪對之 動態負載齒面接觸分析
(Computer-aided Co-Simulation of High-Contact-Ratio Spur Gear Pairs for Dynamically Loaded Tooth Contact Analysis)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 高接觸率正齒輪對由於不會產生軸向力,且因高接觸率減緩因齒對交換對嚙合剛性變動的影響,因此常應用在高負載或高轉速的場合。然而在設計高接觸率齒輪對時,也必須考慮相關問題。首先在多齒對接觸下,各齒對負載分配會影響到嚙合時變剛性。此特性在高速運轉下,會影響傳動噪音和振動。此外,輪齒、軸和軸承的變形也會影響齒輪對的齒面接觸特性與嚙合剛性。
由於傳統齒輪動態分析多以系統角度分析傳動之動態特性,而無法探討嚙合齒面在受動態負載下的接觸特性。因此本論文以電腦輔助分析軟體MSC.Marc與MSC.Adams對高接觸率正齒輪對進行協同分析,以瞭解齒輪對在動態負載下齒面接觸各種特性。齒輪對之主動軸採懸臂支撐,從動軸則為簡單支撐方式。分析條件則包括有、無修整齒面以及有、無軸平行度誤差。
在分析建模方面,齒輪部分使用MSC.Marc建立5個齒對進行動態受載齒面接觸分析。主動齒輪在不同齒面寬使用多個rbe2元素進行運動控制,並在此設為協同模擬連接點,以分析傳動軸在高速轉動下對齒輪對的影響。從動齒輪內孔以圓柱剛體貼合,圓柱中心設定連接點。從動齒輪的運動設為由該點帶動,且扭力作用於此。傳動軸則使用MSC.Adams進行動態模擬。軸段設為FE Part,並將連接點設於齒輪部連接點相同座標處。最後使用MSC.CoSim結合MSC.Adams和MSC.Marc進行協同模擬。
考慮分析時間,初始條件採啟動時有瞬間速度變化,以透過暫態分析來瞭解電腦輔助協同模擬之效能。從CoSim協同模擬結果發現Marc可以正常分析,但Adams在分析上仍有問題尚未克服如CoSim僅能擇一傳輸Adams計算得到的速度或作用力資料到Marc。另一方面為了使計算更精確,Adams的分析步階數採用Marc的倍數。但在Marc的步階間隔中,Adams會以上一步接收的剛性值沿著剛度曲線的切線方向獨自計算並將計算結果呈現出來。此設定導致Adams計算結果與真實狀況有所差異。
在各項分析結果皆在起始產生極大振盪,之後隨時間而慢慢平緩。而在無修整齒輪對分析結果中,接觸斑會因軸剛性關係集中於靠近軸承側。在無修整齒輪對具有軸歪斜誤差時,皆在換齒時發生齒頂接觸而導致接觸應力產生極大突跳。而接觸斑形狀會受到軸誤差與軸變形方向影響。在方向同側時,接觸斑會更集中於靠近軸承側;方向相反時,軸變形會與軸誤差相互抵消,反而產生近似正常線接觸型式。而軸傾斜誤差影響相對小,接觸斑未因誤差而出現明顯變化。而修整齒輪對的分析結果顯示,嚙合作用力之振盪值相對小;而接觸斑在嚙合過程中一直保持在齒面中心處。同時軸誤差對於修整齒輪對的影響甚小。
摘要(英) High-contact ratio spur gear pair are often used in high-load or high-speed applications, due to the absence of axial forces and the reduction in the impact of mesh stiffness resulting from the exchange of gear pairs. Nevertheless, additional considerations must be taken into account when designing spur gear pairs for high contact ratio applications. Firstly, in the case of multi-tooth contact, the load distribution among the tooth pairs will affect the time-variant mesh stiffness. This characteristic can influence transmission noise and vibration at high speeds. Furthermore, the deformation of the gears, shafts, and bearings will also impact the tooth contact characteristics and mesh stiffness of the gear pairs.
The conventional dynamic analysis of gears is based on a systems perspective, which makes it impossible to investigate the contact characteristics of the engaged tooth surface under dynamic loading. Therefore, the objective of this study is to employ computer-aided analysis software, MSC.Marc and MSC.Adams, to conduct a co-simulation of high contact ratio spur gear pairs. This approach is intended to enable an understanding of dynamically loaded tooth contact characteristics of gear pairs. The driving shaft of the gear pair is modeled as cantilever support, while the driven shaft as simple support. The high-contact-ratio gear pairs are analyzed according to the conditions with or without flank modification and shaft misalignment.
In terms of modeling for analysis, five pairs of teeth of the gear were modeled using MSC.Marc for dynamically loaded tooth contact analysis. The motion control of the driving gear is done using several rbe2 elements at different tooth widths, where they are set up as the connection points for co-simulation in order to analyze the influence of the shaft on the gear pairs at high speeds. The inner bore of the driven gear is fitted with a cylindrical rigid body and the centre of the cylinder is set as the connection point. The motion of the driven gear is set to be driven from this point and the torque is applied there. The shafts are dynamically simulated using MSC. Adams. The shaft sections are set up as FE Parts and the connection points are set to the same coordinates as the connection points of the gear sections. Finally, the co-simulation is carried out by using MSC.CoSim in combination with MSC.Adams and MSC.Marc.
Considering the analysis time, the initial condition is a transient velocity change at the time of startup, in order to understand the effect of computer-aided co-simulation through the transient analysis. From the results of the CoSim simulation, it is found that Marc can be analyzed normally, but there are still some problems in the analysis of Adams that have not been overcome, e.g., CoSim can only select and transmit either the velocity or the force data calculated by Adams to Marc; on the other hand, in order to make the calculations more accurate, the number of steps of the analysis of Adams adopts a multiple of that of Marc. However, in the step intervals of Marc, the stiffness value received in the previous step is calculated and presented by Adams independently along the tangential direction of the stiffness curve. This setting causes the Adams calculations to differ from the real situation.
In all analyses, the results begin with a high amplitude, which slowly decrease with time. In the results of the analyses of non-modified gear pairs, the contact patterns are concentrated near the side of the bearing, due to the stiffness of the shaft. In the case of non-modified gear pairs with shaft skew errors, contact on the top of the tooth during the exchange of tooth pairs, results a significant increase in contact stresses. The direction of shaft misalignment and shaft deformation exert a significant influence on the contact pattern. When the direction is identical, the contact pattern will be more concentrated close to of the bearing; conversely, when the direction is opposite, the shaft deformation and shaft error will compensate for each other, resulting in a contact pattern that is analogous to the typical line contact pattern. The impact of shaft inclination error is relatively minor, with no notable alteration in the contact pattern resulting from the error. The results of the analysis of the modified gear pairs demonstrate that the vibration value of the mesh force is relatively minimal, and that the contact pattern remains center on the tooth flank throughout the mesh process. Conversely, the impact of shaft misalignment on the modified gear pair is found to be insignificant.
關鍵字(中) ★ 高接觸率齒輪對
★ 軸誤差
★ 齒面修整
★ 動態受載齒面接觸分析
★ 協同模擬
★ CoSim
關鍵字(英) ★ high-contact ratio gear pair
★ axis misalignment
★ flank modification
★ dynamically loaded tooth contact
★ co-simulation
★ CoSim
論文目次 摘 要 i
Abstract iii
目 錄 v
圖 目 錄 vii
表 目 錄 xx
第 1 章 前言 1
1.1 研究背景 1
1.2 文獻回顧 4
1.3 研究目的與範疇 5
1.4 論文架構 6
第 2 章 CoSim協同模擬分析方法 7
2.1 Marc原理 7
2.2 Adams原理 7
2.3 CoSim原理 8
第 3 章 分析案例 11
3.1 齒輪數據及齒面修整 11
3.1.1 齒輪分析參數 11
3.1.2 齒面修整 13
3.2 分析條件 17
3.2.1 動態條件 17
3.2.2 齒輪對誤差 18
第 4 章 CAE設定 20
4.1 建模規劃 20
4.2 Marc設定 20
4.2.1 Marc FE-模型 20
4.2.2 扭力設定 23
4.2.3 接觸設定 24
4.2.4 運動設定 26
4.3 Adams設定 28
4.3.1 軸設定 28
4.3.2 軸承設定 29
4.3.3 運動條件設定 30
4.3.4 連接點設定 31
4.4 CoSim設定 32
第 5 章 分析結果 34
5.1 無修整齒輪對 34
5.1.1 無誤差 34
5.1.2 正歪斜偏差 47
5.1.3 負歪斜偏差 60
5.1.4 正傾斜偏差 72
5.1.5 負傾斜偏差 84
5.2 修整齒輪對 96
5.2.1 無誤差結果 96
5.2.2 正歪斜偏差 108
5.2.3 負歪斜偏差 119
5.2.4 正傾斜偏差 130
5.2.5 負傾斜偏差 141
第 6 章 結論與未來展望 153
6.1 結論 153
6.2 未來展望 154
參考文獻 155
參考文獻 [1] Cornell, R., and Westervelt, W., “Dynamic Tooth Loads and Stressing for High Contact Ratio Spur Gears,” Journal of Mechanical Science and Technology 100(1), pp.69-76,1978.
[2] Pleguezuelos, M., Pedrero, J.I. and Sánchez, M.B. “Load Sharing and Contact Stress Calculation of High Contact Ratio Internal Spur Gears, ” New Trends in Mechanism and Machine Science 24, pp. 771– 778, 2015
[3] Ye, S-y and Tsai, S-j, “A computerized method for loaded tooth contact analysis of high-contact-ratio spur gears with or without flank modification considering tip corner contact and shaft misalignment” Mechanism and Machine Theory, Vol 97, pp. 190– 214, 2016
[4] Huang, K., et al. “Nonlinear dynamics analysis of high contact ratio gears system with multiple clearances,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol 42(98),2020
[5] Wang, J. and Howard, I. “Finite Element Analysis of High Contact Ratio Spur Gears in Mesh,” Journal of Tribology, Vol.127(3), pp.469 – 483,2005.
[6] Lin, T., Ou, H., and Li, R., “A finite element method for 3D static and dynamic contact/impact analysis of gear drives,” Computer Methods in Applied Mechanics and Engineering, Vol.196(9), pp 1716-1728, 2007.
[7] Jiyad, K.M. and Avis, A., “Finite Element Analysis of High Contact Ratio Spur Gear and Taguchi Optimization of Gear Parameters,” Journal of Mechanical and Civil Engineering, pp 11-20, 2016.
[8] Gaziantep Üniversitesi, “Analysis of Contact Stresses in Spur Gears by Finite Element Method,” European Journal of Science and Technology, 17, pp 539-545, 2019.
[9] Pleguezuelos, M., Sánchez, M.B. and Pedrero, J.I. Control of transmission error of high contact ratio spur gears with symmetric profile modifications, ” Mechanism and Machine Theory, Vol.149, 2020.
[10] Masmoudi, W., et al. “Evaluating lightweight gear transmission error: a novel nonlinear finite element approach using direct constraint contact algorithm,” Solid and Structural Mechanics, Vol.9, 2023.
[11] Shimanovsky, A., et al. “Simulation of Spur Gear for their Nonparallel Axes,” Acta Mechanica Slovaca, Vol.20(1), pp 28-32, 2016.
[12] Ambaye, G.A. and Lemu, H.G., “Dynamic analysis of spur gear with backlash using ADAMS,” Materials Today: Proceedings, Vol.38, pp 2959-2967, 2021.
[13] Albers, A., Emmrich, D., Häußler, P., “Automated Structural Optimization of Flexible Components Using MSC.Adams/Flex and MSC.Nastran Sol200,” 1th European MSC.ADAMS Users’ Conference, 2002.
[14] Kohar, R., Hrcek, S., and Medvecky, S., “Usage of Dynamic Analysis to Determine Force Interactions Between Components of Rolling Bearings,” Communications - Scientific Letters of the University of Zilina, 14(3), pp 62-67, 2012.
[15] Huang, Hsun-Hsuan, Wulong Sun, and T. Bin Juang. “Power Transfer Unit Gear Rattle Assessment Using AMESim-ADAMS Co-simulation.” SAE Technical Paper , 2018.
[16] da Silva, S. F., Eckert, J. J., et al. “Multi-body Dynamics Co-simulation of Planetary Gear Train for Dynamic Meshing Force Analysis." Multibody Mechatronic Systems, pp 159-167, 2020.
[17] Catelani, D., et al. “Application of Advanced Co-Simulation Technology for the Analysis of Grasping,” Innovations in Mechanical Engineering, pp 312-324, 2021.
[18] 傅林立,「大型薄壁四點接觸旋轉軸承之結構動靜態分析」,國立中央大學機械工程學系碩士論文,2021。
[19] MSC CoSim User Guide 2022.
[20] KISSsoft 2022
[21] DIN-3964
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明