參考文獻 |
[1] M. Tvaronavičienė, J. Baublys, J. Raudeliūnienė, D. Jatautaitė, Global energy consumption peculiarities and energy sources: Role of renewables, Energy transformation towards sustainability, Elsevier2020, pp. 1-49.
[2] G. Nicoletti, N. Arcuri, G. Nicoletti, R. Bruno, A technical and environmental comparison between hydrogen and some fossil fuels, Energy Conversion and Management, 89 (2015) 205-213.
[3] R. Chaubey, S. Sahu, O.O. James, S. Maity, A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources, Renewable and Sustainable Energy Reviews, 23 (2013) 443-462.
[4] J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese Journal of Catalysis, 39 (2018) 390-394.
[5] L. Barreto, A. Makihira, K. Riahi, The hydrogen economy in the 21st century: a sustainable development scenario, International Journal of Hydrogen Energy, 28 (2003) 267-284.
[6] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, D. Hissel, Hydrogen energy systems: A critical review of technologies, applications, trends and challenges, Renewable and Sustainable Energy Reviews, 146 (2021) 111180.
[7] M. Tavares, S.A.S. Machado, L.H. Mazo, Study of hydrogen evolution reaction in acid medium on Pt microelectrodes, Electrochimica Acta, 46 (2001) 4359-4369.
[8] A.P. Murthy, J. Madhavan, K. Murugan, Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media, Journal of Power Sources, 398 (2018) 9-26.
[9] A. Kahyarian, B. Brown, S. Nesic, Mechanism of the hydrogen evolution reaction in mildly acidic environments on gold, Journal of The Electrochemical Society, 164 (2017) H365.
[10] Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts, Angewandte Chemie International Edition, 57 (2018) 7568-7579.
[11] M. Ďurovič, J. Hnát, K. Bouzek, Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review, Journal of Power Sources, 493 (2021) 229708.
[12] N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions, Advanced science, 5 (2018) 1700464.
[13] A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, International Journal of Hydrogen Energy, 42 (2017) 11053-11077.
[14] H. Rommal, P. Morgan, The role of absorbed hydrogen on the voltage‐time behavior of nickel cathodes in hydrogen evolution, Journal of The Electrochemical Society, 135 (1988) 343.
[15] J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, Ni–Mo nanopowders for efficient electrochemical hydrogen evolution, ACS catalysis, 3 (2013) 166-169.
[16] Z. Yin, F. Chen, A facile electrochemical fabrication of hierarchically structured nickel–copper composite electrodes on nickel foam for hydrogen evolution reaction, Journal of Power Sources, 265 (2014) 273-281.
[17] I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction, International journal of hydrogen energy, 37 (2012) 2147-2156.
[18] D.S. Hall, C. Bock, B.R. MacDougall, The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution, Journal of The Electrochemical Society, 160 (2013) F235.
[19] W. Badawy, H. Nady, M. Negem, Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crystalline Ni–Co cathodes, international journal of hydrogen energy, 39 (2014) 10824-10832.
[20] M.A. Dominguez-Crespo, M. Plata-Torres, A.M. Torres-Huerta, E.M. Arce-Estrada, J.M. Hallen-Lopez, Kinetic study of hydrogen evolution reaction on Ni30 Mo70, Co30Mo70, Co30Ni70 and Co10Ni20Mo70 alloy electrodes, Materials characterization, 55 (2005) 83-91.
[21] L. Brewer, P.R. Wengert, Erratum to: Transition metal alloys of extraordinary stability; An example of generalized Lewis-acid-base interactions in metallic systems, Metallurgical Transactions, 4 (1973) 83-104.
[22] C. Li, J.-B. Baek, Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction, ACS omega, 5 (2019) 31-40.
[23] M. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction, Nano Research, 9 (2016) 28-46.
[24] F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review, International journal of hydrogen energy, 40 (2015) 256-274.
[25] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, Y.-J. Ciou, The development of a real-time image guided micro electroplating system, International Journal of Electrochemical Science, 5 (2010) 1810-1820.
[26] Y.-R. Hwang, J.-C. Lin, T.-C. Chen, The analysis of the deposition rate for continuous micro-anode guided electroplating process, International Journal of Electrochemical Science, 7 (2012) 1359-1370.
[27] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, Y.-T. Tseng, Fabrication of 3D microstructure by localized electrochemical deposition with image feedback distance control and five-axis motion platform, ECS Journal of Solid State Science and Technology, 5 (2016) P425.
[28] 程憲威, 以微電鍍法製備鎳鉬合金微柱並探討其在1.0 M KOH溶液中電解產氫之性能, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 206.
[29] 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, 應用材料科學國際研究生碩士學位學程, 國立中央大學, 桃園縣, 2020, pp. 75.
[30] W. Giurlani, G. Zangari, F. Gambinossi, M. Passaponti, E. Salvietti, F. Di Benedetto, S. Caporali, M. Innocenti, Electroplating for decorative applications: Recent trends in research and development, Coatings, 8 (2018) 260.
[31] J.D. Madden, S.R. Lafontaine, I.W. Hunter, Fabrication by electrodeposition: building 3D structures and polymer actuators, MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995, pp. 77-81.
[32] J.D. Madden, I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition, Journal of microelectromechanical systems, 5 (1996) 24-32.
[33] E. El-Giar, D. Thomson, Localized electrochemical plating of interconnectors for microelectronics, IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, IEEE, 1997, pp. 327-332.
[34] E. El‐Giar, R. Said, G. Bridges, D. Thomson, Localized electrochemical deposition of copper microstructures, Journal of the Electrochemical Society, 147 (2000) 586.
[35] A. Jansson, G. Thornell, S. Johansson, High resolution 3D microstructures made by localized electrodeposition of nickel, Journal of The Electrochemical Society, 147 (2000) 1810.
[36] S. Yeo, J. Choo, K. Sim, On the effects of ultrasonic vibrations on localized electrochemical deposition, Journal of micromechanics and microengineering, 12 (2002) 271.
[37] R. Said, Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling, Nanotechnology, 14 (2003) 523.
[38] S. Seol, J. Yi, X. Jin, C. Kim, J. Je, W. Tsai, P. Hsu, Y. Hwu, C. Chen, L. Chang, Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition, electrochemical and solid-state letters, 7 (2004) C95.
[39] S.K. Seol, A.R. Pyun, Y. Hwu, G. Margaritondo, J.H. Je, Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography, Advanced Functional Materials, 15 (2005) 934-937.
[40] S. Seol, J. Kim, J. Je, Y. Hwu, G. Margaritondo, Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition, Electrochemical and solid-state letters, 10 (2007) C44.
[41] C.-Y. Lee, C.-S. Lin, B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions, Journal of Micromechanics and Microengineering, 18 (2008) 105008.
[42] J. Hu, M.-F. Yu, Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds, Science, 329 (2010) 313-316.
[43] M.-C. Huang, T.-L. Chang, T.-H. Kao, C.-C. Fu, Metal deposition on flexible membrane through the combination of localized electrochemical deposition and electroless plating, Microsystem technologies, 19 (2013) 455-460.
[44] F. Wang, F. Wang, H. He, Parametric electrochemical deposition of controllable morphology of copper micro-columns, Journal of The Electrochemical Society, 163 (2016) E322.
[45] F. Wang, J. Sun, D. Liu, Y. Wang, W. Zhu, Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition, Journal of The Electrochemical Society, 164 (2017) D297.
[46] A.B. Kamaraj, M. Sundaram, A study on the effect of inter-electrode gap and pulse voltage on current density in electrochemical additive manufacturing, Journal of Applied Electrochemistry, 48 (2018) 463-469.
[47] W. Ren, J. Xu, Z. Lian, X. Sun, Z. Xu, H. Yu, Localized electrodeposition micro additive manufacturing of pure copper microstructures, International Journal of Extreme Manufacturing, 4 (2021) 015101.
[48] 陳承志, 銅基材上之單軸微電析鎳製程研究, 機械工程研究所, 國立中央大學, 桃園縣, 1999, pp. 158.
[49] 游絢博, 陽極單軸間歇運動下之直流、脈衝微電析鎳, 機械工程研究所, 國立中央大學, 桃園縣, 2000, pp. 177.
[50] 葉柏青, 微陽極引導電鍍與監測, 機械工程研究所, 國立中央大學, 桃園縣, 2003, pp. 147.
[51] 張庭綱, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究, 機械工程研究所, 國立中央大學, 桃園縣, 2004, pp. 168.
[52] 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, 機械工程研究所, 國立中央大學, 桃園縣, 2005, pp. 151.
[53] J. Lin, S. Jang, D. Lee, C. Chen, P. Yeh, T. Chang, J. Yang, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating, Journal of Micromechanics and Microengineering, 15 (2005) 2405.
[54] T. Chang, J. Lin, J. Yang, P. Yeh, D. Lee, S. Jiang, Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition, Journal of Micromechanics and Microengineering, 17 (2007) 2336.
[55] J. Yang, J. Lin, T. Chang, X. You, S. Jiang, Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process, Journal of Micromechanics and Microengineering, 19 (2009) 025015.
[56] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing, ECS Journal of Solid State Science and Technology, 3 (2014) P268.
[57] 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, 機械工程學系, 國立中央大學, 桃園縣, 2015, pp. 97.
[58] X. Guan, 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, 機械工程學系, 國立中央大學, 桃園縣, 2019, pp. 101.
[59] 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2022, pp. 170.
[60] 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 161.
[61] 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 177.
[62] 楊政諭, 以微電鍍法製備鎳鈷鐵、鎳鈷鐵鉻合金及其在鹼性環境中之產氧反應行為研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2023, pp. 137.
[63] A. Bard, Standard potentials in aqueous solution, Routledge2017.
[64] A. Bai, C.-C. Hu, Effects of electroplating variables on the composition and morphology of nickel–cobalt deposits plated through means of cyclic voltammetry, Electrochimica acta, 47 (2002) 3447-3456.
[65] G.B. Darband, M. Aliofkhazraei, A.S. Rouhaghdam, M. Kiani, Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction, Applied Surface Science, 465 (2019) 846-862.
[66] J. Vaes, J. Fransaer, J.P. Celis, The role of metal hydroxides in NiFe deposition, Journal of the Electrochemical Society, 147 (2000) 3718.
[67] K.-M. Yin, J.-H. Wei, J.-R. Fu, B.N. Popov, S. Popova, R.E. White, Mass transport effects on the electrodeposition of iron-nickel alloys at the presence of additives, Journal of applied electrochemistry, 25 (1995) 543-555.
[68] P. Searson, T. Moffat, Electrochemical surface modification and materials processing, Critical Reviews in Surface Chemistry, 3 (1994) 171.
[69] D. Clark, D. Wood, U. Erb, Industrial applications of electrodeposited nanocrystals, Nanostructured Materials, 9 (1997) 755-758.
[70] X. Li, Z. Li, Nano-sized Si3N4 reinforced NiFe nanocomposites by electroplating, Materials Science and Engineering: A, 358 (2003) 107-113.
[71] J.-P. Celis, J. Roos, C. Buelens, J. Fransaer, Mechanism of electrolytic composite plating: survey and trends, Transactions of the IMF, 69 (1991) 133-139.
[72] Z. Zheng, N. Li, C.-Q. Wang, D.-Y. Li, Y.-M. Zhu, G. Wu, Ni–CeO2 composite cathode material for hydrogen evolution reaction in alkaline electrolyte, international journal of hydrogen energy, 37 (2012) 13921-13932.
[73] Z. Zheng, N. Li, C.-Q. Wang, D.-Y. Li, F.-Y. Meng, Y.-M. Zhu, Q. Li, G. Wu, Electrochemical synthesis of Ni–S/CeO2 composite electrodes for hydrogen evolution reaction, Journal of power sources, 230 (2013) 10-14.
[74] S. Shin, Z. Jin, D.H. Kwon, R. Bose, Y.-S. Min, High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition, Langmuir, 31 (2015) 1196-1202.
[75] X. Yin, G. Sun, A. Song, L. Wang, Y. Wang, H. Dong, G. Shao, A novel structure of Ni-(MoS2/GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution, Electrochimica Acta, 249 (2017) 52-63.
[76] N.V. Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, V.D. Jović, Non-noble metal composite cathodes for hydrogen evolution. Part II: The Ni–MoO2 coatings electrodeposited from nickel chloride–ammonium chloride bath containing MoO2 powder particles, international journal of hydrogen energy, 36 (2011) 6450-6461.
[77] N.V. Krstajić, L. Gajić-Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, V.D. Jović, Non-noble metal composite cathodes for hydrogen evolution. Part I: The Ni–MoOx coatings electrodeposited from Watt’s type bath containing MoO3 powder particles, international journal of hydrogen energy, 36 (2011) 6441-6449.
[78] S. Shibli, A. Riyas, M.A. Sha, R. Mole, Tuning of phosphorus content and electrocatalytic character of CeO2-RuO2 composite incorporated Ni-P coating for hydrogen evolution reaction, Journal of Alloys and Compounds, 696 (2017) 595-603.
[79] H. Wang, W. Fu, X. Yang, Z. Huang, J. Li, H. Zhang, Y. Wang, Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis, Journal of materials chemistry A, 8 (2020) 6926-6956.
[80] S. Sultan, J.N. Tiwari, A.N. Singh, S. Zhumagali, M. Ha, C.W. Myung, P. Thangavel, K.S. Kim, Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting, Advanced Energy Materials, 9 (2019) 1900624.
[81] H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis, Electrochemical Energy Reviews, 4 (2021) 473-507.
[82] F. Sun, Q. Tang, D.-e. Jiang, Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction, ACS Catalysis, 12 (2022) 8404-8433.
[83] J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications, Advanced materials, 29 (2017) 1605838.
[84] X. Yu, J. Zhao, L.-R. Zheng, Y. Tong, M. Zhang, G. Xu, C. Li, J. Ma, G. Shi, Hydrogen evolution reaction in alkaline media: alpha-or beta-nickel hydroxide on the surface of platinum?, ACS Energy Letters, 3 (2017) 237-244.
[85] J. Horiuti, M. Polanyi, Grundlinien einer theorie der protonuebertragung, Acta physicochim. URSS, 2 (1935) 505-532.
[86] J. Bonde, P.G. Moses, T.F. Jaramillo, J.K. Nørskov, I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides, Faraday discussions, 140 (2009) 219-231.
[87] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, science, 317 (2007) 100-102.
[88] C. Nickel, ASM Specialty Handbook, ASM International Materials Park, OH, (2000) 44073-40002.
[89] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82 (1909) 172-175.
[90] R. LeRoy, M. Janjua, R. Renaud, U. Leuenberger, Analysis of time‐variation effects in water electrolyzers, Journal of The Electrochemical Society, 126 (1979) 1674.
[91] D. Soares, O. Teschke, I. Torriani, Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media, Journal of The Electrochemical Society, 139 (1992) 98.
[92] T.F. O’Brien, T.V. Bommaraju, F. Hine, T.F. O’Brien, T.V. Bommaraju, F. Hine, Overview of the chlor-alkali industry, Handbook of Chlor-Alkali Technology: Volume I: Fundamentals, Volume II: Brine Treatment and Cell Operation, Volume III: Facility Design and Product Handling, Volume IV: Plant Commissioning and Support Systems, Volume V: Corrosion, Environmental Issues, and Future Development, (2005) 37-74.
[93] R.K. Shervedani, A.H. Alinoori, A.R. Madram, Electrocatalytic activities of nickel-phosphorous composite coating reinforced with codeposited graphite carbon for hydrogen evolution reaction in alkaline solution, J. New Mater. Electrochem. Syst, 11 (2008) 259-265.
[94] I.A. Raj, On the catalytic activity of Ni Mo Fe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen, Applied surface science, 59 (1992) 245-252.
[95] I.A. Raj, Nickel based composite electrolytic surface coatings as electrocatalysts for the cathodes in the energy efficient industrial production of hydrogen from alkaline water electrolytic cells, International journal of hydrogen energy, 17 (1992) 413-421.
[96] I.A. Raj, Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells, Journal of materials science, 28 (1993) 4375-4382.
[97] I.A. Raj, K. Vasu, Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings, Journal of applied electrochemistry, 20 (1990) 32-38.
[98] I.A. Raj, K. Vasu, Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits, Journal of applied electrochemistry, 22 (1992) 471-477.
[99] A. Karimzadeh, M. Aliofkhazraei, F.C. Walsh, A review of electrodeposited Ni-Co alloy and composite coatings: Microstructure, properties and applications, Surface and Coatings Technology, 372 (2019) 463-498.
[100] F. Pérez-Alonso, C. Adán, S. Rojas, M. Peña, J. Fierro, Ni–Co electrodes prepared by electroless-plating deposition. A study of their electrocatalytic activity for the hydrogen and oxygen evolution reactions, International Journal of Hydrogen Energy, 40 (2015) 51-61.
[101] S. Costovici, A.-C. Manea, T. Visan, L. Anicai, Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids, Electrochimica Acta, 207 (2016) 97-111.
[102] M. Gao, C. Yang, Q. Zhang, Y. Yu, Y. Hua, Y. Li, P. Dong, Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution, Electrochimica Acta, 215 (2016) 609-616.
[103] S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.-J. Kim, J.H. Jang, H. Kim, S.-K. Kim, High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis, Applied Surface Science, 349 (2015) 629-635.
[104] Q. Han, K. Liu, J. Chen, X. Wei, A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes, International Journal of Hydrogen Energy, 28 (2003) 1207-1212.
[105] I. Paseka, Hydrogen evolution reaction on Ni–P alloys: The internal stress and the activities of electrodes, Electrochimica acta, 53 (2008) 4537-4543.
[106] F. Ganci, S. Lombardo, C. Sunseri, R. Inguanta, Nanostructured electrodes for hydrogen production in alkaline electrolyzer, Renewable Energy, 123 (2018) 117-124.
[107] M. Shviro, S. Polani, R.E. Dunin‐Borkowski, D. Zitoun, Bifunctional electrocatalysis on Pd‐Ni core–shell nanoparticles for hydrogen oxidation reaction in alkaline medium, Advanced Materials Interfaces, 5 (2018) 1701666.
[108] S.H. Hong, S.H. Ahn, I. Choi, S.G. Pyo, H.-J. Kim, J.H. Jang, S.-K. Kim, Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting, Applied surface science, 307 (2014) 146-152.
[109] X. Zhang, Y. Li, Y. Guo, A. Hu, M. Li, T. Hang, H. Ling, 3D hierarchical nanostructured Ni–Co alloy electrodes on porous nickel for hydrogen evolution reaction, International Journal of Hydrogen Energy, 44 (2019) 29946-29955.
[110] A. Maurya, S. Suman, A. Bhardwaj, L. Mohapatra, A.K. Kushwaha, Substrate Dependent Electrodeposition of Ni–Co Alloy for Efficient Hydrogen Evolution Reaction, Electrocatalysis, 14 (2023) 68-77.
[111] J.R. Lince, P.D. Fleischauer, Crystallinity of rf-sputtered MoS 2 films, Journal of Materials Research, 2 (1987) 827-838.
[112] T. Pecoraro, R. Chianelli, Hydrodesulfurization catalysis by transition metal sulfides, Journal of Catalysis, 67 (1981) 430-445.
[113] H. Tributsch, J. Bennett, Electrochemistry and photochemistry of MoS2 layer crystals. I, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 81 (1977) 97-111.
[114] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, Journal of the American Chemical Society, 127 (2005) 5308-5309.
[115] C.G. Morales-Guio, L.-A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution, Chemical Society Reviews, 43 (2014) 6555-6569.
[116] D. Merki, X. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts, Energy & Environmental Science, 4 (2011) 3878-3888.
[117] A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides—efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution, Energy & Environmental Science, 5 (2012) 5577-5591.
[118] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature chemistry, 5 (2013) 263-275.
[119] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Advanced materials, 25 (2013) 5807-5813.
[120] Y. Xu, R. Ge, J. Yang, J. Li, S. Li, Y. Li, J. Zhang, J. Feng, B. Liu, W. Li, Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation, Journal of Energy Chemistry, 74 (2022) 45-71.
[121] P.S. Venkatesh, N. Kannan, M.G. Babu, G. Paulraj, K. Jeganathan, Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction, International Journal of Hydrogen Energy, 47 (2022) 37256-37263.
[122] W. Dong, H. Liu, X. Liu, H. Wang, X. Li, L. Tian, Defective-MoS2/rGO heterostructures with conductive 1T phase MoS2 for efficient hydrogen evolution reaction, International Journal of Hydrogen Energy, 46 (2021) 9360-9370.
[123] Z. He, W. Que, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Applied Materials Today, 3 (2016) 23-56.
[124] M. Liu, M.S. Hybertsen, Q. Wu, A physical model for understanding the activation of MoS2 basal‐plane sulfur atoms for the hydrogen evolution reaction, Angewandte Chemie International Edition, 59 (2020) 14835-14841.
[125] X. Chen, J. Sun, J. Guan, J. Ji, M. Zhou, L. Meng, M. Chen, W. Zhou, Y. Liu, X. Zhang, Enhanced hydrogen evolution reaction performance of MoS2 by dual metal atoms doping, International Journal of Hydrogen Energy, 47 (2022) 23191-23200.
[126] S. Geng, W. Yang, Y. Liu, Y. Yu, Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction, Journal of catalysis, 391 (2020) 91-97.
[127] Y.C. Chen, A.Y. Lu, P. Lu, X. Yang, C.M. Jiang, M. Mariano, B. Kaehr, O. Lin, A. Taylor, I.D. Sharp, Structurally deformed MoS2 for electrochemically stable, thermally resistant, and highly efficient hydrogen evolution reaction, Advanced Materials, 29 (2017) 1703863.
[128] Q. Tang, D.-e. Jiang, Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles, Acs Catalysis, 6 (2016) 4953-4961.
[129] S. Shi, Z. Sun, Y.H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS 2, Journal of Materials Chemistry A, 6 (2018) 23932-23977.
[130] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, Journal of the American Chemical Society, 135 (2013) 10274-10277.
[131] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T.-p. Chen, Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nature communications, 7 (2016) 10672.
[132] J. Zhou, M. Guo, L. Wang, Y. Ding, Z. Zhang, Y. Tang, C. Liu, S. Luo, 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor, Chemical Engineering Journal, 366 (2019) 163-171.
[133] B. Xia, P. Liu, Y. Liu, D. Gao, D. Xue, J. Ding, Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets, Applied Physics Letters, 113 (2018).
[134] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of materials research, 7 (1992) 1564-1583.
[135] X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Materials characterization, 48 (2002) 11-36.
[136] N. Stilwell, D. Tabor, Elastic recovery of conical indentations, Proceedings of the Physical Society, 78 (1961) 169.
[137] 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2020, pp. 150.
[138] 李盈穀, 以微電鍍法製備鋅銅合金微結構, 機械工程學系, 國立中央大學, 桃園縣, 2020, pp. 89.
[139] O.P. Watts, The elektrodeposition of cobalt and nickel, Transactions of the American Electrochemical Society, 23 (1913) 99-155.
[140] A. Saraby-Reintjes, M. Fleischmann, Kinetics of electrodeposition of nickel from watts baths, Electrochimica Acta, 29 (1984) 557-566.
[141] 廖士鈞, Ni-Co微電鍍暨化學機械研磨之應用研究, 機械與精密工程研究所, 國立高雄應用科技大學, 高雄市, 2009, pp. 108.
[142] J.P. Hoare, On the role of boric acid in the Watts bath, Journal of The Electrochemical Society, 133 (1986) 2491.
[143] J. Cao, Y. Zhang, C. Zhang, L. Cai, Z. Li, C. Zhou, Construction of defect-rich 1T-MoS2 towards efficient electrocatalytic hydrogen evolution: Recent advances and future perspectives, Surfaces and Interfaces, 25 (2021) 101305.
[144] X.-H. Zhang, N. Li, J. Wu, Y.-Z. Zheng, X. Tao, Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects, Applied Catalysis B: Environmental, 229 (2018) 227-236.
[145] L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Vacancy-induced ferromagnetism of MoS2 nanosheets, Journal of the American Chemical Society, 137 (2015) 2622-2627.
[146] M.H. Abdulmajeed, Rana Afif Majed Anaee and, (2016).
[147] C. Lupi, A. Dell′Era, M. Pasquali, Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media, international journal of hydrogen energy, 34 (2009) 2101-2106.
[148] T. Sun, J. Cao, J. Dong, H. Du, H. Zhang, J. Chen, L. Xu, Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction, international journal of hydrogen energy, 42 (2017) 6637-6645.
[149] J. Guan, Y. Liu, Y. Fang, X. Du, Y. Fu, L. Wang, M. Zhang, Co-Ni alloy nanoparticles supported by carbon nanofibers for hydrogen evolution reaction, Journal of Alloys and Compounds, 868 (2021) 159172.
[150] W. Dai, L. Lin, Y. Li, F. Li, L. Chen, Hydrogen evolution reaction in alkaline media on Ni–S–Co electrode with hierarchical morphology prepared by gradient electrodeposition, International Journal of Hydrogen Energy, 44 (2019) 28746-28756.
[151] V. Sumi, M.A. Sha, S. Arunima, S. Shibli, Development of a novel method of NiCoP alloy coating for electrocatalytic hydrogen evolution reaction in alkaline media, Electrochimica Acta, 303 (2019) 67-77.
[152] P. Zhang, H. Chen, M. Wang, Y. Yang, J. Jiang, B. Zhang, L. Duan, Q. Daniel, F. Li, L. Sun, Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution, Journal of Materials Chemistry A, 5 (2017) 7564-7570.
[153] H. Han, H. Choi, S. Mhin, Y.-R. Hong, K.M. Kim, J. Kwon, G. Ali, K.Y. Chung, M. Je, H.N. Umh, Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation, Energy & Environmental Science, 12 (2019) 2443-2454.
[154] C. González-Buch, I. Herraiz-Cardona, E. Ortega, J. García-Antón, V. Pérez-Herranz, Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media, International journal of hydrogen energy, 38 (2013) 10157-10169.
[155] X. Chen, X. Zhao, Y. Wang, S. Wang, Y. Shang, J. Xu, F. Guo, Y. Zhang, Layered Ni− Co− P Electrode Synthesized by CV Electrodeposition for Hydrogen Evolution at Large Currents, ChemCatChem, 13 (2021) 3619-3627.
[156] G. Brug, A.L. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, Journal of electroanalytical chemistry and interfacial electrochemistry, 176 (1984) 275-295.
[157] D.R. Stull, Vapor pressure of pure substances. Organic and inorganic compounds, Industrial & Engineering Chemistry, 39 (2002) 517-550.
[158] R. Konings, E. Cordfunke, The vapour pressures of hydroxides I. The alkali hydroxides KOH and CsOH, The Journal of Chemical Thermodynamics, 20 (1988) 103-108.
[159] C. Lupi, A. Dell′Era, M. Pasquali, P. Imperatori, Composition, morphology, structural aspects and electrochemical properties of Ni–Co alloy coatings, Surface and Coatings Technology, 205 (2011) 5394-5399.
[160] N.D. Nikolić, K.I. Popov, L.J. Pavlović, M. Pavlović, The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential, Journal of Electroanalytical Chemistry, 588 (2006) 88-98.
[161] F. Ganci, V. Cusumano, P. Livreri, G. Aiello, C. Sunseri, R. Inguanta, Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer, International Journal of Hydrogen Energy, 46 (2021) 10082-10092.
[162] W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys, Advanced Materials, 30 (2018) 1804727.
[163] S. Shetty, M.M.J. Sadiq, D.K. Bhat, A.C. Hegde, Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis, Journal of Electroanalytical Chemistry, 796 (2017) 57-65.
[164] Y. Xie, A. Miche, V. Vivier, M. Turmine, Electrodeposition of Ni-Co alloys from neat protic ionic liquid: Application to the hydrogen evolution reaction, Applied Surface Science, 635 (2023) 157693.
[165] Y. Li, X. Zhang, A. Hu, M. Li, Morphological variation of electrodeposited nanostructured Ni-Co alloy electrodes and their property for hydrogen evolution reaction, International Journal of Hydrogen Energy, 43 (2018) 22012-22020.
[166] L.A. Dahonog, M.D.L. Balela, Electroless deposition of nickel-cobalt nanoparticles for hydrogen evolution reaction, Materials Today: Proceedings, 22 (2020) 268-274.
[167] A.E. Gorospe, M.D.L. Balela, Ni-Co nanocomposites deposited on carbon fiber paper as an electrocatalyst towards hydrogen evolution reaction, Materials Today: Proceedings, 22 (2020) 255-261.
[168] J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14, Journal of the American Chemical Society, 136 (2014) 7587-7590.
[169] J. Li, M. Yan, X. Zhou, Z.Q. Huang, Z. Xia, C.R. Chang, Y. Ma, Y. Qu, Mechanistic insights on ternary Ni2− xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting, Advanced Functional Materials, 26 (2016) 6785-6796.
[170] L. Feng, H. Vrubel, M. Bensimon, X. Hu, Easily-prepared dinickel phosphide (Ni 2 P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution, Physical Chemistry Chemical Physics, 16 (2014) 5917-5921.
[171] Y. Feng, X.-Y. Yu, U. Paik, Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution, Chemical Communications, 52 (2016) 1633-1636.
[172] A. Loiácono, M.J. Gómez, E.A. Franceschini, G.I. Lacconi, Enhanced Hydrogen Evolution Activity of Ni [MoS 2] Hybrids in Alkaline Electrolyte, Electrocatalysis, 11 (2020) 309-316.
[173] Z.-j. Huang, D.-s. Xiong, MoS2 coated with Al2O3 for Ni–MoS2/Al2O3 composite coatings by pulse electrodeposition, Surface and Coatings Technology, 202 (2008) 3208-3214.
[174] X. Yin, H. Dong, G. Sun, W. Yang, A. Song, Q. Du, L. Su, G. Shao, Ni–MoS2 composite coatings as efficient hydrogen evolution reaction catalysts in alkaline solution, International Journal of Hydrogen Energy, 42 (2017) 11262-11269.
[175] Q. Cheng, Z. Yao, F. Zhang, S. Zhang, M. Oleksander, Microstructure and tribological property of Ni–MoS2 composite coatings prepared by ultrasonic and mechanical stirring electrodeposition, Materials Research Express, 6 (2020) 126434.
[176] Y. He, S. Wang, F. Walsh, Y.-L. Chiu, P. Reed, Self-lubricating Ni-P-MoS2 composite coatings, Surface and Coatings Technology, 307 (2016) 926-934.
[177] T. Zou, J. Tu, S. Zhang, L. Chen, Q. Wang, L. Zhang, D. He, Friction and wear properties of electroless Ni-P-(IF-MoS2) composite coatings in humid air and vacuum, Materials Science and Engineering: A, 426 (2006) 162-168.
[178] W. Jiang, J. Li, W. Cheng, H. Li, X. Zhai, F. Chen, Y. Chen, Fabrication of superhydrophobic self-cleaning Ni-Co-MoS2/Ni composite coating, Surfaces and Interfaces, 42 (2023) 103474.
[179] A. Ren, M. Kang, X. Fu, Tribological behaviour of Ni/WC–MoS2 composite coatings prepared by jet electrodeposition with different nano-MoS2 doping concentrations, Engineering Failure Analysis, 143 (2023) 106934.
[180] A. Ren, M. Kang, X. Fu, Corrosion behaviour of Ni/WC-MoS2 composite coatings prepared by jet electrodeposition with different MoS2 doping concentrations, Applied Surface Science, 613 (2023) 155905.
[181] A. Huang, P. Liu, P. Lin, M. Fang, G. Jin, C. Chen, Ni-Co-P nanosheets in-situ grown at macroporous nickel mesh with promising performance for hydrogen evolution reaction in alkaline medium, Ionics, 29 (2023) 1531-1541.
[182] X. Liu, S. Deng, D. Xiao, M. Gong, J. Liang, T. Zhao, T. Shen, D. Wang, Hierarchical bimetallic Ni–Co–P microflowers with ultrathin nanosheet arrays for efficient hydrogen evolution reaction over all pH values, ACS applied materials & interfaces, 11 (2019) 42233-42242.
[183] X. Kong, N. Wang, Q. Zhang, J. Liang, M. Wang, C. Wei, X. Chen, Y. Zhao, X. Zhang, Ni‐Doped MoS2 as an Efficient Catalyst for Electrochemical Hydrogen Evolution in Alkine Media, ChemistrySelect, 3 (2018) 9493-9498.
[184] N.H. Attanayake, L. Dheer, A.C. Thenuwara, S.C. Abeyweera, C. Collins, U.V. Waghmare, D.R. Strongin, Ni‐and Co‐substituted metallic MoS2 for the alkaline hydrogen evolution reaction, ChemElectroChem, 7 (2020) 3606-3615.
[185] Y. Feng, T. Zhang, J. Zhang, H. Fan, C. He, J. Song, 3D 1T‐MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction, Small, 16 (2020) 2002850.
[186] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chemical Society Reviews, 46 (2017) 337-365.
[187] Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory, Angewandte Chemie International Edition, 54 (2015) 52-65.
[188] J.H. Montoya, M. Garcia-Mota, J.K. Nørskov, A. Vojvodic, Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting, Physical Chemistry Chemical Physics, 17 (2015) 2634-2640.
[189] Y. Zhang, T. Gao, Z. Jin, X. Chen, D. Xiao, A robust water oxidation electrocatalyst from amorphous cobalt–iron bimetallic phytate nanostructures, Journal of materials chemistry A, 4 (2016) 15888-15895.
[190] 賴宗群, 以MAGE製備鈷鐵、鈷鐵鉻合金微柱,並探討其在1.0 M KOH中之電解析氧性能, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2023, pp. 149. |