博碩士論文 111323040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.135.188.108
姓名 葉瀚翔(Han-Hsiang Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎳-鈷/二硫化鉬複合微電極之MAGE製備及其在1.0 M KOH中電解水產氫之陰極效能
(Ni-Co/MoS2 Composite Microelectrodes Prepared by MAGE and Their Cathodic Efficiency of H2-production from Water Electrolysis in 1.0 M KOH)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-24以後開放)
摘要(中) 本研究採用本實驗室研發之微陽極影像導引電鍍法(Micro-anode guided electroplating, MAGE)首先製備鎳-鈷合金微柱,用於電催化工作電極產製氫氣。以直徑250 m之白金絲作微陽極,銅線(直徑0.5 mm)作為陰極,兩極間維持80 m之間距,偏壓控制在4.0 V進行電鍍。在陰極上析鍍出純鎳(Ni)及一系列鎳-鈷合金(Ni80Co20 Ni70Co30 Ni61Co39 Ni55Co45 Ni53Co47)微柱。其次,於製備Ni55Co45鍍浴中加入含0.00, 0.10, 0.20, 0.30, 0.40 mM之1T-MoS2奈米粉末,進一步製備鎳-鈷/二硫化鉬複合微電極。所有鎳-鈷合金電極及鎳-鈷/二硫化鉬複合微柱,藉由SEM來觀察表面形貌、EDS分析元素組成以及XRD分析晶體結構,再將這些微柱作為工作電極,浸泡至1.0 M KOH中進行產氫效能之評估,測試方法包括線性掃描伏安法、循環伏安法、計時電位法和電化學阻抗頻譜等四種方法。
結果顯示: 自鎳-鈷合金鍍液中電鍍所得之微柱,隨鍍浴中[Co2+]由0增高至0.10 M時,其SEM表面形貌粗糙度增加,表面出現顆粒狀結構,經EDS分析,當合金中鈷含量超過40 at. %時,表面呈現錐狀物。以[Co2+]/[Ni2+] 濃度比= 0.08 M/1.25 M製備所得之Ni55Co45合金微柱之產氫效能最好;至於所得之Ni-Co/MoS2複合微柱,複合電極之SEM表面形貌則呈現花椰菜狀結節顆粒,顆粒均勻且介面清晰可辨,隨鍍浴中MoS2含量由0 (g/L)上升至0.4 (g/L),所得複合微柱表面之花椰菜顆粒間隙逐漸縮小。添加0.4 (g/L)之1T-MoS2複合電鍍浴(代號NCM04)析鍍所得之微柱,經EDS分析,其化學組成(at. %) 含有45 % Ni、34%Co、8%Mo、14%S之產氫效能最優。比較產氫效能,Ni-Co合金系列微柱中以Ni55Co45產氫效能最好: 產氫的交換電流密度最大(0.616 mA/cm2),塔弗斜率最低(106 mV/dec),在電流密度10 mA/cm2下之瞬時氫過電位最低(有159 mV),在進行1週次的循環伏安分析中呈現出了最低的起始電位(-0.273 V)以及最大的陰極峰值電流密度(-448 mA/cm2)。
代號NCM04復合微柱產氫的交換電流密度最大(1.843 mA/cm2),塔弗斜率最低(68 mV/dec),在電流密度10 mA/cm2下之瞬時氫過電位最低(有89 mV),在進行1週次的循環伏安分析中呈現出了最低的起始電位(-0.102 V)以及最大的陰極峰值電流密度(-866 mA/cm2)。經調整極化掃描速率來計算電雙層電容(Cdl),並計算電極的電化學活性表面積(ECSA),顯示複合電極NCM04具有最大的電化學活性高表面積: 783 cm2具備最高之電化學活性。本論文證實添加二硫化鉬至鎳-鈷合金鍍浴,電鍍所得之Ni-Co/MoS2複合電極,能有效改善鹼性電解水產氫之陰極。
摘要(英) This study employs the micro-anode guided electroplating (MAGE) method developed in our laboratory to first prepare nickel-cobalt alloy micro-columns for use in electrocatalytic working electrodes for hydrogen production. A platinum wire with a diameter of 250 μm is used as the micro-anode, and a copper wire (diameter 0.5 mm) as the cathode, maintaining a distance of 80 μm between the electrodes, with the plating voltage controlled at 4.0 V. Pure nickel (Ni) and a series of nickel-cobalt alloys (Ni80Co20, Ni70Co30, Ni61Co39, Ni55Co45, Ni53Co47) micro-columns are deposited on the cathode. Next, 1T-MoS2 nanopowder is added to the Ni55Co45 plating bath in concentrations of 0.00, 0.10, 0.20, 0.30, and 0.40 mM to further prepare nickel-cobalt/molybdenum disulfide composite micro-electrodes. All nickel-cobalt alloy electrodes and nickel-cobalt/molybdenum disulfide composite micro-columns are observed using SEM to study surface morphology, analyzed for elemental composition using EDS, and examined for crystal structure using XRD. These micro-columns are then used as working electrodes, immersed in 1.0 M KOH to evaluate hydrogen production performance. The testing methods include linear sweep voltammetry, cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy.
Results show that the micro-columns electroplated from the nickel-cobalt alloy bath, with increasing [Co2+] from 0 to 0.10 M, exhibit increased surface roughness and granular structures as observed by SEM. EDS analysis indicates that when the cobalt content in the alloy exceeds 40 at. %, the surface presents conical structures. The Ni55Co45 alloy micro-column prepared with a [Co2+]/[Ni2+] concentration ratio of 0.08 M/1.25 M demonstrates the best hydrogen production performance. As for the Ni-Co/MoS2 composite micro-columns, the SEM surface morphology shows uniform and clearly identifiable cauliflower-like granular nodules. With the increase of MoS2 concentration in the plating bath from 0 to 0.4 mM, the gaps between the cauliflower-like particles on the composite micro-column surface gradually decrease. The micro-columns deposited from a composite electroplating bath with 0.4 g/L 1T-MoS2 (designated as NCM04) exhibit the best hydrogen production performance, with EDS analysis showing a chemical composition (at. %) of 45% Ni, 34% Co, 8% Mo, and 14% S.
Comparing hydrogen production performance, the Ni55Co45 micro-columns in the Ni-Co alloy series exhibit the best performance: highest exchange current density (0.616 mA/cm²), lowest Tafel slope (106 mV/dec), lowest instantaneous hydrogen overpotential at a current density of 10 mA/cm² (159 mV), and the lowest onset potential (-0.273 V) with the highest cathodic peak current density (-448 mA/cm²) during one-week cyclic voltammetry analysis. The composite micro-columns NCM04 show the highest exchange current density (1.843 mA/cm²), lowest Tafel slope (68 mV/dec), lowest instantaneous hydrogen overpotential at a current density of 10 mA/cm² (89 mV), and the lowest onset potential (-0.102 V) with the highest cathodic peak current density (-866 mA/cm²) during one-week cyclic voltammetry analysis. By adjusting the polarization scan rate to calculate the double-layer capacitance (Cdl) and the electrochemical active surface area (ECSA), the composite electrode NCM04 demonstrates the largest electrochemical active surface area of 783 cm², indicating the highest electrochemical activity.
關鍵字(中) ★ 微陽極導引電鍍
★ 鎳-鈷合金
★ 二硫化鉬
★ 析氫反應
關鍵字(英) ★ Micro-anode Guided Electroplating
★ nickel-cobalt alloy
★ molybdenum disulfide
★ hydrogen evolution reaction
論文目次 中文摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 x
圖目錄 xiii
第一章 、前言 1
1-1 全球能源發展趨勢 1
1-2 產氫方法之介紹 1
1-3 電解水產氫使用之陰極材料 2
1-4 研究動機與目的 3
第二章 、文獻回顧 4
2-1 電鍍原理 4
2-2 局部電鍍製程發展 5
2-3 奈微米材料實驗室微電鍍製程發展 10
2-4 合金共鍍 11
2-4-1 Ni-Co異常共鍍 13
2-5 複合電鍍 14
2-6 鹼性溶液中的產氫機制 15
2-7 析氫火山圖 16
2-8 鎳基合金電極於鹼性溶液中之析氫反應研究 17
2-8-1 鎳-鈷合金 18
2-9 過渡金屬硫族化物電極之析氫反應研究 19
2-10 1T相二硫化鉬 20
2-11 奈米壓痕測試理論 23
第三章 、研究方法與實驗設備 25
3-1 實驗流程 25
3-2 微陽極導引電鍍機台與實驗設備 27
3-3 水熱合成釜之儀器介紹 28
3-4 鍍浴選擇與配置 29
3-5 陰陽極製備 31
3-6 二硫化鉬粉末之製備 31
3-7 二硫化鉬粉末1T相之確認 33
3-8 合金微柱之表面形貌觀察 34
3-9 合金微柱之元素組成成份分析 34
3-10 合金微柱之晶體結構分析 34
3-11 合金微柱之顯微結構分析 34
3-12 合金微柱之奈米壓痕硬度測試 35
3-13 合金微柱在1.0 M KOH溶液中之電化學產氫測試 35
3-13-1 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 37
3-13-2 循環伏安法(Cyclic voltammetry, CV) 39
3-13-3 計時電位法(Chronopotentiometry, CP) 40
3-13-4 電化學阻抗頻譜(Electrochemical impedance spectroscopy, EIS) 41
3-13-5 排水集氣法 42
第四章 、結果與討論 45
4-1 改變鎳-鈷鍍浴中硫酸鈷濃度之特性分析 45
4-1-1 鎳-鈷合金微柱之元素組成分析 45
4-1-2 鎳-鈷合金微柱之表面形貌 47
4-1-3 鎳-鈷合金微柱之晶體結構分析 49
4-1-4 鎳-鈷合金微柱之顯微結構分析 51
4-2 鎳-鈷合金微柱於1 M KOH溶液中之電化學析氫反應 53
4-2-1 鎳-鈷合金微柱於析氫反應下之線性掃描伏安法 53
4-2-2 鎳-鈷合金微柱於析氫反應下之循環伏安法 57
4-2-3 鎳-鈷合金微柱於析氫反應下之計時電位法 64
4-2-4 鎳-鈷合金微柱於析氫反應下之電化學阻抗圖譜 67
4-3 鎳-鈷合金微柱之產氫效能 69
4-4 二硫化鉬相之判別 72
4-5 1T相二硫化鉬粉末之表面形貌 73
4-6 1T相二硫化鉬粉末之粒徑分析 74
4-7 改變鎳-鈷/二硫化鉬複合電鍍浴中二硫化鉬含量之特性分析 75
4-7-1 鎳-鈷/二硫化鉬複合電極之Zeta potential 75
4-7-2 鎳-鈷/二硫化鉬複合電極之元素組成分析 76
4-7-3 鎳-鈷/二硫化鉬複合電極之表面形貌 78
4-7-4 鎳-鈷/二硫化鉬複合電極之晶體結構分析 80
4-7-5 鎳-鈷/二硫化鉬複合電極之顯微結構分析 81
4-8 鎳-鈷/二硫化鉬複合電極於1.0 M KOH溶液中之電化學析氫反應 82
4-8-1 鎳-鈷/二硫化鉬複合電極於析氫反應下之線性掃描伏安法 82
4-8-2 鎳-鈷/二硫化鉬複合電極於析氫反應下之循環伏安法 86
4-8-3 鎳-鈷/二硫化鉬複合電極之電化學活性表面積 89
4-8-4 鎳-鈷/二硫化鉬複合電極於析氫反應下之計時電位法 94
4-8-5 鎳-鈷/二硫化鉬複合電極於析氫反應下之電化學阻抗圖譜 96
4-9 鎳-鈷、鎳-鈷/二硫化鉬複合電極之元素分佈 98
4-10 鎳-鈷、鎳-鈷/二硫化鉬複合電極之機械性質 100
4-11 與其他文獻之產氫效能比較 102
4-12 鎳-鈷/二硫化鉬複合電極之氫氣蒐集 103
4-13 4×4鎳-鈷/二硫化鉬複合電極陣列之氫氣蒐集 105
第五章 、結論與未來展望 107
參考資料 109
參考文獻 [1] M. Tvaronavičienė, J. Baublys, J. Raudeliūnienė, D. Jatautaitė, Global energy consumption peculiarities and energy sources: Role of renewables, Energy transformation towards sustainability, Elsevier2020, pp. 1-49.
[2] G. Nicoletti, N. Arcuri, G. Nicoletti, R. Bruno, A technical and environmental comparison between hydrogen and some fossil fuels, Energy Conversion and Management, 89 (2015) 205-213.
[3] R. Chaubey, S. Sahu, O.O. James, S. Maity, A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources, Renewable and Sustainable Energy Reviews, 23 (2013) 443-462.
[4] J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese Journal of Catalysis, 39 (2018) 390-394.
[5] L. Barreto, A. Makihira, K. Riahi, The hydrogen economy in the 21st century: a sustainable development scenario, International Journal of Hydrogen Energy, 28 (2003) 267-284.
[6] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, D. Hissel, Hydrogen energy systems: A critical review of technologies, applications, trends and challenges, Renewable and Sustainable Energy Reviews, 146 (2021) 111180.
[7] M. Tavares, S.A.S. Machado, L.H. Mazo, Study of hydrogen evolution reaction in acid medium on Pt microelectrodes, Electrochimica Acta, 46 (2001) 4359-4369.
[8] A.P. Murthy, J. Madhavan, K. Murugan, Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media, Journal of Power Sources, 398 (2018) 9-26.
[9] A. Kahyarian, B. Brown, S. Nesic, Mechanism of the hydrogen evolution reaction in mildly acidic environments on gold, Journal of The Electrochemical Society, 164 (2017) H365.
[10] Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts, Angewandte Chemie International Edition, 57 (2018) 7568-7579.
[11] M. Ďurovič, J. Hnát, K. Bouzek, Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review, Journal of Power Sources, 493 (2021) 229708.
[12] N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions, Advanced science, 5 (2018) 1700464.
[13] A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, International Journal of Hydrogen Energy, 42 (2017) 11053-11077.
[14] H. Rommal, P. Morgan, The role of absorbed hydrogen on the voltage‐time behavior of nickel cathodes in hydrogen evolution, Journal of The Electrochemical Society, 135 (1988) 343.
[15] J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, Ni–Mo nanopowders for efficient electrochemical hydrogen evolution, ACS catalysis, 3 (2013) 166-169.
[16] Z. Yin, F. Chen, A facile electrochemical fabrication of hierarchically structured nickel–copper composite electrodes on nickel foam for hydrogen evolution reaction, Journal of Power Sources, 265 (2014) 273-281.
[17] I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz, Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction, International journal of hydrogen energy, 37 (2012) 2147-2156.
[18] D.S. Hall, C. Bock, B.R. MacDougall, The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution, Journal of The Electrochemical Society, 160 (2013) F235.
[19] W. Badawy, H. Nady, M. Negem, Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crystalline Ni–Co cathodes, international journal of hydrogen energy, 39 (2014) 10824-10832.
[20] M.A. Dominguez-Crespo, M. Plata-Torres, A.M. Torres-Huerta, E.M. Arce-Estrada, J.M. Hallen-Lopez, Kinetic study of hydrogen evolution reaction on Ni30 Mo70, Co30Mo70, Co30Ni70 and Co10Ni20Mo70 alloy electrodes, Materials characterization, 55 (2005) 83-91.
[21] L. Brewer, P.R. Wengert, Erratum to: Transition metal alloys of extraordinary stability; An example of generalized Lewis-acid-base interactions in metallic systems, Metallurgical Transactions, 4 (1973) 83-104.
[22] C. Li, J.-B. Baek, Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction, ACS omega, 5 (2019) 31-40.
[23] M. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction, Nano Research, 9 (2016) 28-46.
[24] F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review, International journal of hydrogen energy, 40 (2015) 256-274.
[25] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, Y.-J. Ciou, The development of a real-time image guided micro electroplating system, International Journal of Electrochemical Science, 5 (2010) 1810-1820.
[26] Y.-R. Hwang, J.-C. Lin, T.-C. Chen, The analysis of the deposition rate for continuous micro-anode guided electroplating process, International Journal of Electrochemical Science, 7 (2012) 1359-1370.
[27] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, Y.-T. Tseng, Fabrication of 3D microstructure by localized electrochemical deposition with image feedback distance control and five-axis motion platform, ECS Journal of Solid State Science and Technology, 5 (2016) P425.
[28] 程憲威, 以微電鍍法製備鎳鉬合金微柱並探討其在1.0 M KOH溶液中電解產氫之性能, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 206.
[29] 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, 應用材料科學國際研究生碩士學位學程, 國立中央大學, 桃園縣, 2020, pp. 75.
[30] W. Giurlani, G. Zangari, F. Gambinossi, M. Passaponti, E. Salvietti, F. Di Benedetto, S. Caporali, M. Innocenti, Electroplating for decorative applications: Recent trends in research and development, Coatings, 8 (2018) 260.
[31] J.D. Madden, S.R. Lafontaine, I.W. Hunter, Fabrication by electrodeposition: building 3D structures and polymer actuators, MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995, pp. 77-81.
[32] J.D. Madden, I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition, Journal of microelectromechanical systems, 5 (1996) 24-32.
[33] E. El-Giar, D. Thomson, Localized electrochemical plating of interconnectors for microelectronics, IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, IEEE, 1997, pp. 327-332.
[34] E. El‐Giar, R. Said, G. Bridges, D. Thomson, Localized electrochemical deposition of copper microstructures, Journal of the Electrochemical Society, 147 (2000) 586.
[35] A. Jansson, G. Thornell, S. Johansson, High resolution 3D microstructures made by localized electrodeposition of nickel, Journal of The Electrochemical Society, 147 (2000) 1810.
[36] S. Yeo, J. Choo, K. Sim, On the effects of ultrasonic vibrations on localized electrochemical deposition, Journal of micromechanics and microengineering, 12 (2002) 271.
[37] R. Said, Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling, Nanotechnology, 14 (2003) 523.
[38] S. Seol, J. Yi, X. Jin, C. Kim, J. Je, W. Tsai, P. Hsu, Y. Hwu, C. Chen, L. Chang, Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition, electrochemical and solid-state letters, 7 (2004) C95.
[39] S.K. Seol, A.R. Pyun, Y. Hwu, G. Margaritondo, J.H. Je, Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography, Advanced Functional Materials, 15 (2005) 934-937.
[40] S. Seol, J. Kim, J. Je, Y. Hwu, G. Margaritondo, Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition, Electrochemical and solid-state letters, 10 (2007) C44.
[41] C.-Y. Lee, C.-S. Lin, B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions, Journal of Micromechanics and Microengineering, 18 (2008) 105008.
[42] J. Hu, M.-F. Yu, Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds, Science, 329 (2010) 313-316.
[43] M.-C. Huang, T.-L. Chang, T.-H. Kao, C.-C. Fu, Metal deposition on flexible membrane through the combination of localized electrochemical deposition and electroless plating, Microsystem technologies, 19 (2013) 455-460.
[44] F. Wang, F. Wang, H. He, Parametric electrochemical deposition of controllable morphology of copper micro-columns, Journal of The Electrochemical Society, 163 (2016) E322.
[45] F. Wang, J. Sun, D. Liu, Y. Wang, W. Zhu, Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition, Journal of The Electrochemical Society, 164 (2017) D297.
[46] A.B. Kamaraj, M. Sundaram, A study on the effect of inter-electrode gap and pulse voltage on current density in electrochemical additive manufacturing, Journal of Applied Electrochemistry, 48 (2018) 463-469.
[47] W. Ren, J. Xu, Z. Lian, X. Sun, Z. Xu, H. Yu, Localized electrodeposition micro additive manufacturing of pure copper microstructures, International Journal of Extreme Manufacturing, 4 (2021) 015101.
[48] 陳承志, 銅基材上之單軸微電析鎳製程研究, 機械工程研究所, 國立中央大學, 桃園縣, 1999, pp. 158.
[49] 游絢博, 陽極單軸間歇運動下之直流、脈衝微電析鎳, 機械工程研究所, 國立中央大學, 桃園縣, 2000, pp. 177.
[50] 葉柏青, 微陽極引導電鍍與監測, 機械工程研究所, 國立中央大學, 桃園縣, 2003, pp. 147.
[51] 張庭綱, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究, 機械工程研究所, 國立中央大學, 桃園縣, 2004, pp. 168.
[52] 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, 機械工程研究所, 國立中央大學, 桃園縣, 2005, pp. 151.
[53] J. Lin, S. Jang, D. Lee, C. Chen, P. Yeh, T. Chang, J. Yang, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating, Journal of Micromechanics and Microengineering, 15 (2005) 2405.
[54] T. Chang, J. Lin, J. Yang, P. Yeh, D. Lee, S. Jiang, Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition, Journal of Micromechanics and Microengineering, 17 (2007) 2336.
[55] J. Yang, J. Lin, T. Chang, X. You, S. Jiang, Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process, Journal of Micromechanics and Microengineering, 19 (2009) 025015.
[56] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing, ECS Journal of Solid State Science and Technology, 3 (2014) P268.
[57] 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, 機械工程學系, 國立中央大學, 桃園縣, 2015, pp. 97.
[58] X. Guan, 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, 機械工程學系, 國立中央大學, 桃園縣, 2019, pp. 101.
[59] 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2022, pp. 170.
[60] 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 161.
[61] 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園縣, 2022, pp. 177.
[62] 楊政諭, 以微電鍍法製備鎳鈷鐵、鎳鈷鐵鉻合金及其在鹼性環境中之產氧反應行為研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2023, pp. 137.
[63] A. Bard, Standard potentials in aqueous solution, Routledge2017.
[64] A. Bai, C.-C. Hu, Effects of electroplating variables on the composition and morphology of nickel–cobalt deposits plated through means of cyclic voltammetry, Electrochimica acta, 47 (2002) 3447-3456.
[65] G.B. Darband, M. Aliofkhazraei, A.S. Rouhaghdam, M. Kiani, Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction, Applied Surface Science, 465 (2019) 846-862.
[66] J. Vaes, J. Fransaer, J.P. Celis, The role of metal hydroxides in NiFe deposition, Journal of the Electrochemical Society, 147 (2000) 3718.
[67] K.-M. Yin, J.-H. Wei, J.-R. Fu, B.N. Popov, S. Popova, R.E. White, Mass transport effects on the electrodeposition of iron-nickel alloys at the presence of additives, Journal of applied electrochemistry, 25 (1995) 543-555.
[68] P. Searson, T. Moffat, Electrochemical surface modification and materials processing, Critical Reviews in Surface Chemistry, 3 (1994) 171.
[69] D. Clark, D. Wood, U. Erb, Industrial applications of electrodeposited nanocrystals, Nanostructured Materials, 9 (1997) 755-758.
[70] X. Li, Z. Li, Nano-sized Si3N4 reinforced NiFe nanocomposites by electroplating, Materials Science and Engineering: A, 358 (2003) 107-113.
[71] J.-P. Celis, J. Roos, C. Buelens, J. Fransaer, Mechanism of electrolytic composite plating: survey and trends, Transactions of the IMF, 69 (1991) 133-139.
[72] Z. Zheng, N. Li, C.-Q. Wang, D.-Y. Li, Y.-M. Zhu, G. Wu, Ni–CeO2 composite cathode material for hydrogen evolution reaction in alkaline electrolyte, international journal of hydrogen energy, 37 (2012) 13921-13932.
[73] Z. Zheng, N. Li, C.-Q. Wang, D.-Y. Li, F.-Y. Meng, Y.-M. Zhu, Q. Li, G. Wu, Electrochemical synthesis of Ni–S/CeO2 composite electrodes for hydrogen evolution reaction, Journal of power sources, 230 (2013) 10-14.
[74] S. Shin, Z. Jin, D.H. Kwon, R. Bose, Y.-S. Min, High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition, Langmuir, 31 (2015) 1196-1202.
[75] X. Yin, G. Sun, A. Song, L. Wang, Y. Wang, H. Dong, G. Shao, A novel structure of Ni-(MoS2/GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution, Electrochimica Acta, 249 (2017) 52-63.
[76] N.V. Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, V.D. Jović, Non-noble metal composite cathodes for hydrogen evolution. Part II: The Ni–MoO2 coatings electrodeposited from nickel chloride–ammonium chloride bath containing MoO2 powder particles, international journal of hydrogen energy, 36 (2011) 6450-6461.
[77] N.V. Krstajić, L. Gajić-Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, V.D. Jović, Non-noble metal composite cathodes for hydrogen evolution. Part I: The Ni–MoOx coatings electrodeposited from Watt’s type bath containing MoO3 powder particles, international journal of hydrogen energy, 36 (2011) 6441-6449.
[78] S. Shibli, A. Riyas, M.A. Sha, R. Mole, Tuning of phosphorus content and electrocatalytic character of CeO2-RuO2 composite incorporated Ni-P coating for hydrogen evolution reaction, Journal of Alloys and Compounds, 696 (2017) 595-603.
[79] H. Wang, W. Fu, X. Yang, Z. Huang, J. Li, H. Zhang, Y. Wang, Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis, Journal of materials chemistry A, 8 (2020) 6926-6956.
[80] S. Sultan, J.N. Tiwari, A.N. Singh, S. Zhumagali, M. Ha, C.W. Myung, P. Thangavel, K.S. Kim, Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting, Advanced Energy Materials, 9 (2019) 1900624.
[81] H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis, Electrochemical Energy Reviews, 4 (2021) 473-507.
[82] F. Sun, Q. Tang, D.-e. Jiang, Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction, ACS Catalysis, 12 (2022) 8404-8433.
[83] J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications, Advanced materials, 29 (2017) 1605838.
[84] X. Yu, J. Zhao, L.-R. Zheng, Y. Tong, M. Zhang, G. Xu, C. Li, J. Ma, G. Shi, Hydrogen evolution reaction in alkaline media: alpha-or beta-nickel hydroxide on the surface of platinum?, ACS Energy Letters, 3 (2017) 237-244.
[85] J. Horiuti, M. Polanyi, Grundlinien einer theorie der protonuebertragung, Acta physicochim. URSS, 2 (1935) 505-532.
[86] J. Bonde, P.G. Moses, T.F. Jaramillo, J.K. Nørskov, I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides, Faraday discussions, 140 (2009) 219-231.
[87] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, science, 317 (2007) 100-102.
[88] C. Nickel, ASM Specialty Handbook, ASM International Materials Park, OH, (2000) 44073-40002.
[89] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82 (1909) 172-175.
[90] R. LeRoy, M. Janjua, R. Renaud, U. Leuenberger, Analysis of time‐variation effects in water electrolyzers, Journal of The Electrochemical Society, 126 (1979) 1674.
[91] D. Soares, O. Teschke, I. Torriani, Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media, Journal of The Electrochemical Society, 139 (1992) 98.
[92] T.F. O’Brien, T.V. Bommaraju, F. Hine, T.F. O’Brien, T.V. Bommaraju, F. Hine, Overview of the chlor-alkali industry, Handbook of Chlor-Alkali Technology: Volume I: Fundamentals, Volume II: Brine Treatment and Cell Operation, Volume III: Facility Design and Product Handling, Volume IV: Plant Commissioning and Support Systems, Volume V: Corrosion, Environmental Issues, and Future Development, (2005) 37-74.
[93] R.K. Shervedani, A.H. Alinoori, A.R. Madram, Electrocatalytic activities of nickel-phosphorous composite coating reinforced with codeposited graphite carbon for hydrogen evolution reaction in alkaline solution, J. New Mater. Electrochem. Syst, 11 (2008) 259-265.
[94] I.A. Raj, On the catalytic activity of Ni Mo Fe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen, Applied surface science, 59 (1992) 245-252.
[95] I.A. Raj, Nickel based composite electrolytic surface coatings as electrocatalysts for the cathodes in the energy efficient industrial production of hydrogen from alkaline water electrolytic cells, International journal of hydrogen energy, 17 (1992) 413-421.
[96] I.A. Raj, Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells, Journal of materials science, 28 (1993) 4375-4382.
[97] I.A. Raj, K. Vasu, Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings, Journal of applied electrochemistry, 20 (1990) 32-38.
[98] I.A. Raj, K. Vasu, Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits, Journal of applied electrochemistry, 22 (1992) 471-477.
[99] A. Karimzadeh, M. Aliofkhazraei, F.C. Walsh, A review of electrodeposited Ni-Co alloy and composite coatings: Microstructure, properties and applications, Surface and Coatings Technology, 372 (2019) 463-498.
[100] F. Pérez-Alonso, C. Adán, S. Rojas, M. Peña, J. Fierro, Ni–Co electrodes prepared by electroless-plating deposition. A study of their electrocatalytic activity for the hydrogen and oxygen evolution reactions, International Journal of Hydrogen Energy, 40 (2015) 51-61.
[101] S. Costovici, A.-C. Manea, T. Visan, L. Anicai, Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids, Electrochimica Acta, 207 (2016) 97-111.
[102] M. Gao, C. Yang, Q. Zhang, Y. Yu, Y. Hua, Y. Li, P. Dong, Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution, Electrochimica Acta, 215 (2016) 609-616.
[103] S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.-J. Kim, J.H. Jang, H. Kim, S.-K. Kim, High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis, Applied Surface Science, 349 (2015) 629-635.
[104] Q. Han, K. Liu, J. Chen, X. Wei, A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes, International Journal of Hydrogen Energy, 28 (2003) 1207-1212.
[105] I. Paseka, Hydrogen evolution reaction on Ni–P alloys: The internal stress and the activities of electrodes, Electrochimica acta, 53 (2008) 4537-4543.
[106] F. Ganci, S. Lombardo, C. Sunseri, R. Inguanta, Nanostructured electrodes for hydrogen production in alkaline electrolyzer, Renewable Energy, 123 (2018) 117-124.
[107] M. Shviro, S. Polani, R.E. Dunin‐Borkowski, D. Zitoun, Bifunctional electrocatalysis on Pd‐Ni core–shell nanoparticles for hydrogen oxidation reaction in alkaline medium, Advanced Materials Interfaces, 5 (2018) 1701666.
[108] S.H. Hong, S.H. Ahn, I. Choi, S.G. Pyo, H.-J. Kim, J.H. Jang, S.-K. Kim, Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting, Applied surface science, 307 (2014) 146-152.
[109] X. Zhang, Y. Li, Y. Guo, A. Hu, M. Li, T. Hang, H. Ling, 3D hierarchical nanostructured Ni–Co alloy electrodes on porous nickel for hydrogen evolution reaction, International Journal of Hydrogen Energy, 44 (2019) 29946-29955.
[110] A. Maurya, S. Suman, A. Bhardwaj, L. Mohapatra, A.K. Kushwaha, Substrate Dependent Electrodeposition of Ni–Co Alloy for Efficient Hydrogen Evolution Reaction, Electrocatalysis, 14 (2023) 68-77.
[111] J.R. Lince, P.D. Fleischauer, Crystallinity of rf-sputtered MoS 2 films, Journal of Materials Research, 2 (1987) 827-838.
[112] T. Pecoraro, R. Chianelli, Hydrodesulfurization catalysis by transition metal sulfides, Journal of Catalysis, 67 (1981) 430-445.
[113] H. Tributsch, J. Bennett, Electrochemistry and photochemistry of MoS2 layer crystals. I, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 81 (1977) 97-111.
[114] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, Journal of the American Chemical Society, 127 (2005) 5308-5309.
[115] C.G. Morales-Guio, L.-A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution, Chemical Society Reviews, 43 (2014) 6555-6569.
[116] D. Merki, X. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts, Energy & Environmental Science, 4 (2011) 3878-3888.
[117] A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides—efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution, Energy & Environmental Science, 5 (2012) 5577-5591.
[118] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature chemistry, 5 (2013) 263-275.
[119] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Advanced materials, 25 (2013) 5807-5813.
[120] Y. Xu, R. Ge, J. Yang, J. Li, S. Li, Y. Li, J. Zhang, J. Feng, B. Liu, W. Li, Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation, Journal of Energy Chemistry, 74 (2022) 45-71.
[121] P.S. Venkatesh, N. Kannan, M.G. Babu, G. Paulraj, K. Jeganathan, Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction, International Journal of Hydrogen Energy, 47 (2022) 37256-37263.
[122] W. Dong, H. Liu, X. Liu, H. Wang, X. Li, L. Tian, Defective-MoS2/rGO heterostructures with conductive 1T phase MoS2 for efficient hydrogen evolution reaction, International Journal of Hydrogen Energy, 46 (2021) 9360-9370.
[123] Z. He, W. Que, Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction, Applied Materials Today, 3 (2016) 23-56.
[124] M. Liu, M.S. Hybertsen, Q. Wu, A physical model for understanding the activation of MoS2 basal‐plane sulfur atoms for the hydrogen evolution reaction, Angewandte Chemie International Edition, 59 (2020) 14835-14841.
[125] X. Chen, J. Sun, J. Guan, J. Ji, M. Zhou, L. Meng, M. Chen, W. Zhou, Y. Liu, X. Zhang, Enhanced hydrogen evolution reaction performance of MoS2 by dual metal atoms doping, International Journal of Hydrogen Energy, 47 (2022) 23191-23200.
[126] S. Geng, W. Yang, Y. Liu, Y. Yu, Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction, Journal of catalysis, 391 (2020) 91-97.
[127] Y.C. Chen, A.Y. Lu, P. Lu, X. Yang, C.M. Jiang, M. Mariano, B. Kaehr, O. Lin, A. Taylor, I.D. Sharp, Structurally deformed MoS2 for electrochemically stable, thermally resistant, and highly efficient hydrogen evolution reaction, Advanced Materials, 29 (2017) 1703863.
[128] Q. Tang, D.-e. Jiang, Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles, Acs Catalysis, 6 (2016) 4953-4961.
[129] S. Shi, Z. Sun, Y.H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS 2, Journal of Materials Chemistry A, 6 (2018) 23932-23977.
[130] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, Journal of the American Chemical Society, 135 (2013) 10274-10277.
[131] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T.-p. Chen, Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nature communications, 7 (2016) 10672.
[132] J. Zhou, M. Guo, L. Wang, Y. Ding, Z. Zhang, Y. Tang, C. Liu, S. Luo, 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor, Chemical Engineering Journal, 366 (2019) 163-171.
[133] B. Xia, P. Liu, Y. Liu, D. Gao, D. Xue, J. Ding, Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets, Applied Physics Letters, 113 (2018).
[134] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of materials research, 7 (1992) 1564-1583.
[135] X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Materials characterization, 48 (2002) 11-36.
[136] N. Stilwell, D. Tabor, Elastic recovery of conical indentations, Proceedings of the Physical Society, 78 (1961) 169.
[137] 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2020, pp. 150.
[138] 李盈穀, 以微電鍍法製備鋅銅合金微結構, 機械工程學系, 國立中央大學, 桃園縣, 2020, pp. 89.
[139] O.P. Watts, The elektrodeposition of cobalt and nickel, Transactions of the American Electrochemical Society, 23 (1913) 99-155.
[140] A. Saraby-Reintjes, M. Fleischmann, Kinetics of electrodeposition of nickel from watts baths, Electrochimica Acta, 29 (1984) 557-566.
[141] 廖士鈞, Ni-Co微電鍍暨化學機械研磨之應用研究, 機械與精密工程研究所, 國立高雄應用科技大學, 高雄市, 2009, pp. 108.
[142] J.P. Hoare, On the role of boric acid in the Watts bath, Journal of The Electrochemical Society, 133 (1986) 2491.
[143] J. Cao, Y. Zhang, C. Zhang, L. Cai, Z. Li, C. Zhou, Construction of defect-rich 1T-MoS2 towards efficient electrocatalytic hydrogen evolution: Recent advances and future perspectives, Surfaces and Interfaces, 25 (2021) 101305.
[144] X.-H. Zhang, N. Li, J. Wu, Y.-Z. Zheng, X. Tao, Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects, Applied Catalysis B: Environmental, 229 (2018) 227-236.
[145] L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Vacancy-induced ferromagnetism of MoS2 nanosheets, Journal of the American Chemical Society, 137 (2015) 2622-2627.
[146] M.H. Abdulmajeed, Rana Afif Majed Anaee and, (2016).
[147] C. Lupi, A. Dell′Era, M. Pasquali, Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media, international journal of hydrogen energy, 34 (2009) 2101-2106.
[148] T. Sun, J. Cao, J. Dong, H. Du, H. Zhang, J. Chen, L. Xu, Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction, international journal of hydrogen energy, 42 (2017) 6637-6645.
[149] J. Guan, Y. Liu, Y. Fang, X. Du, Y. Fu, L. Wang, M. Zhang, Co-Ni alloy nanoparticles supported by carbon nanofibers for hydrogen evolution reaction, Journal of Alloys and Compounds, 868 (2021) 159172.
[150] W. Dai, L. Lin, Y. Li, F. Li, L. Chen, Hydrogen evolution reaction in alkaline media on Ni–S–Co electrode with hierarchical morphology prepared by gradient electrodeposition, International Journal of Hydrogen Energy, 44 (2019) 28746-28756.
[151] V. Sumi, M.A. Sha, S. Arunima, S. Shibli, Development of a novel method of NiCoP alloy coating for electrocatalytic hydrogen evolution reaction in alkaline media, Electrochimica Acta, 303 (2019) 67-77.
[152] P. Zhang, H. Chen, M. Wang, Y. Yang, J. Jiang, B. Zhang, L. Duan, Q. Daniel, F. Li, L. Sun, Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution, Journal of Materials Chemistry A, 5 (2017) 7564-7570.
[153] H. Han, H. Choi, S. Mhin, Y.-R. Hong, K.M. Kim, J. Kwon, G. Ali, K.Y. Chung, M. Je, H.N. Umh, Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation, Energy & Environmental Science, 12 (2019) 2443-2454.
[154] C. González-Buch, I. Herraiz-Cardona, E. Ortega, J. García-Antón, V. Pérez-Herranz, Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media, International journal of hydrogen energy, 38 (2013) 10157-10169.
[155] X. Chen, X. Zhao, Y. Wang, S. Wang, Y. Shang, J. Xu, F. Guo, Y. Zhang, Layered Ni− Co− P Electrode Synthesized by CV Electrodeposition for Hydrogen Evolution at Large Currents, ChemCatChem, 13 (2021) 3619-3627.
[156] G. Brug, A.L. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, Journal of electroanalytical chemistry and interfacial electrochemistry, 176 (1984) 275-295.
[157] D.R. Stull, Vapor pressure of pure substances. Organic and inorganic compounds, Industrial & Engineering Chemistry, 39 (2002) 517-550.
[158] R. Konings, E. Cordfunke, The vapour pressures of hydroxides I. The alkali hydroxides KOH and CsOH, The Journal of Chemical Thermodynamics, 20 (1988) 103-108.
[159] C. Lupi, A. Dell′Era, M. Pasquali, P. Imperatori, Composition, morphology, structural aspects and electrochemical properties of Ni–Co alloy coatings, Surface and Coatings Technology, 205 (2011) 5394-5399.
[160] N.D. Nikolić, K.I. Popov, L.J. Pavlović, M. Pavlović, The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential, Journal of Electroanalytical Chemistry, 588 (2006) 88-98.
[161] F. Ganci, V. Cusumano, P. Livreri, G. Aiello, C. Sunseri, R. Inguanta, Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer, International Journal of Hydrogen Energy, 46 (2021) 10082-10092.
[162] W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys, Advanced Materials, 30 (2018) 1804727.
[163] S. Shetty, M.M.J. Sadiq, D.K. Bhat, A.C. Hegde, Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis, Journal of Electroanalytical Chemistry, 796 (2017) 57-65.
[164] Y. Xie, A. Miche, V. Vivier, M. Turmine, Electrodeposition of Ni-Co alloys from neat protic ionic liquid: Application to the hydrogen evolution reaction, Applied Surface Science, 635 (2023) 157693.
[165] Y. Li, X. Zhang, A. Hu, M. Li, Morphological variation of electrodeposited nanostructured Ni-Co alloy electrodes and their property for hydrogen evolution reaction, International Journal of Hydrogen Energy, 43 (2018) 22012-22020.
[166] L.A. Dahonog, M.D.L. Balela, Electroless deposition of nickel-cobalt nanoparticles for hydrogen evolution reaction, Materials Today: Proceedings, 22 (2020) 268-274.
[167] A.E. Gorospe, M.D.L. Balela, Ni-Co nanocomposites deposited on carbon fiber paper as an electrocatalyst towards hydrogen evolution reaction, Materials Today: Proceedings, 22 (2020) 255-261.
[168] J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14, Journal of the American Chemical Society, 136 (2014) 7587-7590.
[169] J. Li, M. Yan, X. Zhou, Z.Q. Huang, Z. Xia, C.R. Chang, Y. Ma, Y. Qu, Mechanistic insights on ternary Ni2− xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting, Advanced Functional Materials, 26 (2016) 6785-6796.
[170] L. Feng, H. Vrubel, M. Bensimon, X. Hu, Easily-prepared dinickel phosphide (Ni 2 P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution, Physical Chemistry Chemical Physics, 16 (2014) 5917-5921.
[171] Y. Feng, X.-Y. Yu, U. Paik, Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution, Chemical Communications, 52 (2016) 1633-1636.
[172] A. Loiácono, M.J. Gómez, E.A. Franceschini, G.I. Lacconi, Enhanced Hydrogen Evolution Activity of Ni [MoS 2] Hybrids in Alkaline Electrolyte, Electrocatalysis, 11 (2020) 309-316.
[173] Z.-j. Huang, D.-s. Xiong, MoS2 coated with Al2O3 for Ni–MoS2/Al2O3 composite coatings by pulse electrodeposition, Surface and Coatings Technology, 202 (2008) 3208-3214.
[174] X. Yin, H. Dong, G. Sun, W. Yang, A. Song, Q. Du, L. Su, G. Shao, Ni–MoS2 composite coatings as efficient hydrogen evolution reaction catalysts in alkaline solution, International Journal of Hydrogen Energy, 42 (2017) 11262-11269.
[175] Q. Cheng, Z. Yao, F. Zhang, S. Zhang, M. Oleksander, Microstructure and tribological property of Ni–MoS2 composite coatings prepared by ultrasonic and mechanical stirring electrodeposition, Materials Research Express, 6 (2020) 126434.
[176] Y. He, S. Wang, F. Walsh, Y.-L. Chiu, P. Reed, Self-lubricating Ni-P-MoS2 composite coatings, Surface and Coatings Technology, 307 (2016) 926-934.
[177] T. Zou, J. Tu, S. Zhang, L. Chen, Q. Wang, L. Zhang, D. He, Friction and wear properties of electroless Ni-P-(IF-MoS2) composite coatings in humid air and vacuum, Materials Science and Engineering: A, 426 (2006) 162-168.
[178] W. Jiang, J. Li, W. Cheng, H. Li, X. Zhai, F. Chen, Y. Chen, Fabrication of superhydrophobic self-cleaning Ni-Co-MoS2/Ni composite coating, Surfaces and Interfaces, 42 (2023) 103474.
[179] A. Ren, M. Kang, X. Fu, Tribological behaviour of Ni/WC–MoS2 composite coatings prepared by jet electrodeposition with different nano-MoS2 doping concentrations, Engineering Failure Analysis, 143 (2023) 106934.
[180] A. Ren, M. Kang, X. Fu, Corrosion behaviour of Ni/WC-MoS2 composite coatings prepared by jet electrodeposition with different MoS2 doping concentrations, Applied Surface Science, 613 (2023) 155905.
[181] A. Huang, P. Liu, P. Lin, M. Fang, G. Jin, C. Chen, Ni-Co-P nanosheets in-situ grown at macroporous nickel mesh with promising performance for hydrogen evolution reaction in alkaline medium, Ionics, 29 (2023) 1531-1541.
[182] X. Liu, S. Deng, D. Xiao, M. Gong, J. Liang, T. Zhao, T. Shen, D. Wang, Hierarchical bimetallic Ni–Co–P microflowers with ultrathin nanosheet arrays for efficient hydrogen evolution reaction over all pH values, ACS applied materials & interfaces, 11 (2019) 42233-42242.
[183] X. Kong, N. Wang, Q. Zhang, J. Liang, M. Wang, C. Wei, X. Chen, Y. Zhao, X. Zhang, Ni‐Doped MoS2 as an Efficient Catalyst for Electrochemical Hydrogen Evolution in Alkine Media, ChemistrySelect, 3 (2018) 9493-9498.
[184] N.H. Attanayake, L. Dheer, A.C. Thenuwara, S.C. Abeyweera, C. Collins, U.V. Waghmare, D.R. Strongin, Ni‐and Co‐substituted metallic MoS2 for the alkaline hydrogen evolution reaction, ChemElectroChem, 7 (2020) 3606-3615.
[185] Y. Feng, T. Zhang, J. Zhang, H. Fan, C. He, J. Song, 3D 1T‐MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction, Small, 16 (2020) 2002850.
[186] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chemical Society Reviews, 46 (2017) 337-365.
[187] Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory, Angewandte Chemie International Edition, 54 (2015) 52-65.
[188] J.H. Montoya, M. Garcia-Mota, J.K. Nørskov, A. Vojvodic, Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting, Physical Chemistry Chemical Physics, 17 (2015) 2634-2640.
[189] Y. Zhang, T. Gao, Z. Jin, X. Chen, D. Xiao, A robust water oxidation electrocatalyst from amorphous cobalt–iron bimetallic phytate nanostructures, Journal of materials chemistry A, 4 (2016) 15888-15895.
[190] 賴宗群, 以MAGE製備鈷鐵、鈷鐵鉻合金微柱,並探討其在1.0 M KOH中之電解析氧性能, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2023, pp. 149.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明