參考文獻 |
[1] T. D. Do, S. Kwak, H. H. Choi, and J.-W. Jung, “Suboptimal control scheme design for interior permanent-magnet synchronous motors: An SDRE-based approach,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 3020–3031, 2014.
[2] IEA, “Global EV Outlook 2024,” Apr. 2024. [Online]. Available: https:// www.iea.org/reports/global-ev-outlook-2024.
[3] Y. Hori, “Future vehicle driven by electricity and control-research on fourwheel-motored “UOT electric march II”,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 954–962, 2004.
[4] X. Sun, Z. Li, X. Wang, and C. Li, “Technology development of electric vehicles: A review,” Energies, vol. 13, no. 1, p. 90, 2020.
[5] Tesla. [Online]. Available: https://www.tesla.com/.
[6] BYD Auto. [Online]. Available: https://www.bydauto.com.cn/pc/.
[7] M. S. Rafaq, A. T. Nguyen, H. H. Choi, and J.-W. Jung, “A robust highorder disturbance observer design for SDRE-based suboptimal speed controller of interior PMSM drives,” IEEE Access, vol. 7, pp. 165671–165683, 2019.
[8] X. Zhang, K. Yan, and W. Zhang, “Composite vector model predictive control with time-varying control period for PMSM drives,” IEEE Trans. Transp. Electrif., vol. 7, no. 3, pp. 1415–1426, 2020.
[9] X. Wang, M. Reitz, and E. E. Yaz, “Field oriented sliding mode control of surface-mounted permanent magnet AC motors: Theory and applications to electrified vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10343–10356, 2018.
[10] S.-W. Hwang, J.-Y. Ryu, J.-W. Chin, S.-H. Park, D.-K. Kim, and M.-S. Lim, “Coupled electromagnetic-thermal analysis for predicting traction motor characteristics according to electric vehicle driving cycle,” IEEE Trans. Veh. Technol., vol. 70, pp. 4262–4272, 2021.
[11] K. Cho, J. Kim, S. B. Choi, and S. Oh, “A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM,” IEEE/ ASME Trans. Mechatronics, vol. 20, pp. 2158–2171, Oct. 2015.
[12] Y. Zhang, C. M. Akujuobi, W. H. Ali, C. L. Tolliver, and L.-S. Shieh, “Load disturbance resistance speed controller design for PMSM,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1198–1208, 2006.
[13] R. S. Rebeiro and M. N. Uddin, “Performance analysis of an FLC-based online adaptation of both hysteresis and PI controllers for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 12–19, 2012.
[14] G.-J. Wang, C.-T. Fong, and K. J. Chang, “Neural-network-based selftuning PI controller for precise motion control of PMAC motors,” IEEE Trans. Ind. Appl., vol. 48, no. 2, pp. 408–415, 2001.
[15] Y.-C. Chang, C.-H. Chen, Z.-C. Zhu, and Y.-W. Huang, “Speed control of the surface-mounted permanent-magnet synchronous motor based on Takagi–Sugeno fuzzy models,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6504–6510, 2016.
[16] D. Q. Dang, M. S. Rafaq, H. H. Choi, and J.-W. Jung, “Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1438–1449, 2016.
[17] A. M. Tusset, J. M. Balthazar, R. T. Rocha, M. A. Ribeiro, and W. B. Lenz, “On suppression of chaotic motion of a nonlinear MEMS oscillator,” Nonlinear Dyn., vol. 99, no. 1, pp. 537–557, 2020.
[18] M. Navabi, A. Davoodi, and M. Reyhanoglu, “Optimum fuzzy sliding mode control of fuel sloshing in a spacecraft using PSO algorithm,” Acta Astronaut., vol. 167, pp. 331–342, 2020.
[19] A. Bavarsad, A. Fakharian, and M. B. Menhaj, “Optimal sliding mode controller for an active transfemoral prosthesis using state-dependent Riccati equation approach,” Arab. J. Sci. Eng., vol. 45, no. 8, pp. 6559–6572, 2020.
[20] M. Asgari and H. N. Foghahayee, “State dependent Riccati equation (SDRE) controller design for moving obstacle avoidance in mobile robot,” SN Appl. Sci., vol. 2, no. 11, pp. 1–29, 2020.
[21] S. R. Nekoo and A. Ollero, “Closed-loop nonlinear optimal control design for flapping-wing flying robot (1.6m wingspan) in indoor confined space: Prototyping, modeling, simulation, and experiment,” ISA Trans., vol. 142, pp. 635–652, 2023.
[22] T. Çimen, “Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis,” J. Guid. Control Dyn., vol. 35, no. 4, pp. 1025–1047, 2012.
[23] L. N. Tan and T. C. Pham, “Optimal tracking control for PMSM with partially unknown dynamics, saturation voltages, torque, and voltage disturbances,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 3481–3491, 2022.
[24] G. Albi, S. Bicego, and D. Kalise, “Gradient-augmented supervised learning of optimal feedback laws using state-dependent Riccati equations,” IEEE Control Syst. Lett., vol. 6, pp. 836–841, 2022.
[25] S. R. Nekoo, J. Á. Acosta, G. Heredia, and A. Ollero, “A benchmark mechatronics platform to assess the inspection around pipes with variable pitch quadrotor for industrial sites,” Mechatronics, vol. 79, p. 102641, 2021.
[26] Š. Janouš, J. Talla, V. Šmídl, and Z. Peroutka, “Constrained LQR control of dual induction motor single inverter drive,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 5548–5558, 2021.
[27] L.-G. Lin, J. Vandewalle, and Y.-W. Liang, “Analytical representation of the state-dependent coefficients in the SDRE/SDDRE scheme for multivariable systems,” Automatica, vol. 59, pp. 106–111, 2015.
[28] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. NJ, USA: Prentice Hall, 1996.
[29] C.-T. Chen, Linear System Theory and Design. NY, USA: Holt, Rinehart and Winston, 2nd ed., 1984.
[30] M. Shajiee, S. K. H. Sani, S. Shamaghdari, and M. B. Naghibi-Sistani, “Design of a robust H∞ dynamic sliding mode torque observer for the 100 KW wind turbine,” Sustain. Energy Grids Netw., vol. 24, p. 100393, 2020.
[31] M. Taherzadeh, M. A. Hamida, M. Ghanes, and M. Koteich, “A new torque observation technique for a PMSM considering unknown magnetic conditions,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 1961–1971, 2021.
[32] J. Lee and J. Lee, “Specializing CGRAs for light-weight convolutional neural networks,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 41, pp. 3387–3399, Oct. 2022.
[33] X. Chen, Y. Zhao, Y. Wang, P. Xu, H. You, C. Li, Y. Fu, Y. Lin, and Z. Wang, “Smartdeal: Remodeling deep network weights for efficient inference and training,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, pp. 7099–7113, Oct. 2023.
[34] L.-G. Lin, R.-S. Wu, P.-K. Huang, M. Xin, C.-T. Wu, and W.-W. Lin, “Fast SDDRE-based maneuvering-target interception at prespecified orientation,” IEEE Trans. Control Syst. Technol., vol. 31, no. 6, pp. 2895–2902, 2023.
[35] L.-G. Lin, R.-S. Wu, C.-T. Yeh, and M. Xin, “Impact angle guidance using computationally enhanced state-dependent differential Riccati-equation scheme,” J. Spacecr. Rockets, vol. 60, no. 5, pp. 1473–1489, 2023.
[36] E.-W. Chu, H.-Y. Fan, and W.-W. Lin, “A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations,” Linear algebra and its applications, vol. 396, pp. 55–80, 2005.
[37] T.-M. Huang, R.-C. Li, and W.-W. Lin, in Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations, ser Fundamentals of Algorithms, vol. 14. SIAM, 2018.
[38] S. R. Nekoo, “Digital implementation of a continuous-time nonlinear optimal controller: An experimental study with real-time computations,” ISA Trans., vol. 101, pp. 346–357, 2020.
[39] Y. Batmani and S. Najafi, “Event-triggered H∞ depth control of remotely operated underwater vehicles,” IEEE Trans. Syst. Man, and Cybern. Syst., vol. 51, no. 2, pp. 1224–1232, 2021.
[40] S. R. Nekoo, “Tutorial and review on the state-dependent Riccati equation,” J. Appl. Nonlinear Dyn., vol. 8, no. 2, pp. 109–166, 2019.
[41] B. Qin, H. Sun, J. Ma, W. Li, T. Ding, Z. Wang, and A. Y. Zomaya, “Robust H∞ control of doubly fed wind generator via state-dependent Riccati equation technique,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2390–2400, 2019.
[42] T. Çimen, “Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method,” Annu. Rev. Control, vol. 34, no. 1, pp. 32–51, 2010.
[43] M. S. Rafaq, W. Midgley, and T. Steffen, “A review of the state of the art of torque ripple minimization techniques for permanent magnet synchronous motors,” IEEE Trans. Industr. Inform., vol. 20, pp. 1019–1031, Jan. 2024.
[44] Magtrol, “Hysteresis brakes and clutches,” Oct. 2019. [Online]. Available: https://www.magtrol.com/wp-content/uploads/hbmanual.pdf.
[45] Avnet. [Online]. Available: https://www.avnet.com/wps/portal/us/products/ avnet-boards/avnet-board-families/ultra96-v2/.
[46] Texas Instruments, “TMS320x2833x, TMS320x2823x Technical Reference Manual,” Mar. 2020. [Online]. Available: https://www.ti.com/ lit/ug/sprui07/sprui07.pdf.
[47] Xilinx, “AXI Quad SPI v3.2 LogiCORE IP Product Guide,” Apr. 2022. [Online]. Available: https://docs.amd.com/r/en-US/pg153-axi-quad-spi.
[48] C. Choi and W. Lee, “Analysis and compensation of time delay effects in hardware-in-the-loop simulation for automotive PMSM drive system,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3403–3410, 2012.
[49] T. Shi, Z. Wang, and C. Xia, “Speed measurement error suppression for PMSM control system using self-adaption Kalman observer,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2753–2763, 2015.
[50] C. Gong, Y. Hu, J. Gao, Y. Wang, and L. Yan, “An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5913–5923, 2020.
[51] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and software for algebraic Riccati equations,” Proc. IEEE, vol. 72, no. 12, pp. 1746–1754, 1984. |