博碩士論文 112323027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.22.248.152
姓名 楊竣丞(Chun-Cheng Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用顆粒阻尼技術於鋼架結構的減振分析:離散元素法與有限元素法雙向耦合模擬
(ibration reduction analysis of steel frames with particle damper:Coupled DEM-FEM model)
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-31以後開放)
摘要(中) 本研究採用雙向耦合離散元素法(Discrete Element Method, DEM)與有限元素法(Finite Element Method, FEM)模擬技術,建立五層樓鋼架結構模型,並在鋼架結構頂樓處安裝顆粒阻尼器(Particle Damper, PD),探討在不同顆粒材料、顆粒粒徑、顆粒填充率、及腔體設計下,顆粒阻尼器對於鋼架結構系統之減振效益,並導入「洛馬普里塔地震」(1989 Loma Prieta earthquake)地表加速度歷時曲線,分析含顆粒阻尼器鋼架結構系統在實際地震波源下之動態反應。本研究設計「懸臂樑自由振動試驗」與「鋼珠撞擊平板試驗」兩項基準測試,驗證本研究建立之雙向耦合DEM-FEM模型的合理性與正確性,研究結果顯示: (1)在相同顆粒總數量下,填充密度較大之顆粒,其碰撞接觸力較大,碰撞耗能較大,減振效果愈佳;(2)在相同顆粒總質量下,填充粒徑較小之顆粒可增加顆粒-腔體間接觸面積及碰撞機率,進而增加減振效益;(3)隨著顆粒填充率降低,其減振效果也逐漸降低,說明本研究設計之顆粒阻尼器需較大顆粒填充率以增加顆粒-腔體間接觸碰撞機率;(4)在腔體總體積與填充顆粒總質量皆相同情況下,將單一腔體劃分為數個小腔體可提高顆粒-腔體間接觸碰撞機率,進而增加減振效益;(5)在真實地震波源振盪下,在系統前三模態特徵頻率下皆有優異減振效果,同時在水平雙向振盪下亦有良好減振效益,成功驗證顆粒阻尼器具有寬頻減振特性與多向性減振特性。
摘要(英) This study uses two-way coupling discrete element method (DEM) and finite element method (FEM) simulation technology to establish a five-story steel frame structure model, which includes a particle damper on the top floor of the steel frame structure, discussing the vibration damping behavior of particle damper for steel frame structural system under different particle materials, particle sizes, filling ratios, and cavity designs. Further more, introducing the "Loma Prieta Earthquake, 1989" surface acceleration duration curve to analyze the dynamic response of steel frame structural system containing particle damper under actual earthquake wave source. In order to verify the correctness of the simulation results of the two-way coupled DEM-FEM model established in this study, two benchmark tests, "cantilever beam free vibration test" and "steel ball impact plate test", were designed. The research results show that: (1) Under the same total number of particles, particles with a higher material density will have larger contact forces, greater energy consumption, and better vibration damping effects. (2) Under the same total mass of particles, filling particles with smaller particle size can increase the contact area and contact probability between the particles and the cavity, therefore improving the vibration damping effect. (3) As the particle filling ratio decreases, the vibration damping effect also gradually decreases, indicating that the particle damper designed in this study requires a larger particle filling ratio to increase the probability of contact and collision between the particles and the cavity. (4) Under the same total volume of the cavity and the same total mass of the filled particles, divide a single cavity into several small cavities can increase the probability of contact and collision between particles and cavity, therefore improving the vibration damping effect. (5) Under real seismic wave source oscillations, the system has outstanding vibration damping effects at the first three mode characteristic frequencies, and also shows outstanding vibration damping effects under multi-directional oscillations. It has been successfully verified that the particle damper has broadband vibration damping characteristics and multi-directionality vibration damping characteristics.
關鍵字(中) ★ 鋼架結構減振
★ 顆粒阻尼器
★ 雙向耦合DEM-FEM模擬
★ 顆粒參數分析
★ 多向性減振
★ 寬頻減振
關鍵字(英)
論文目次 摘要 I
Abstract ii
目錄 iii
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-2-1顆粒阻尼器 1
1-2-2顆粒阻尼器應用於機械工程 3
1-2-3顆粒阻尼器應用於土木工程 5
1-3 研究動機與目的 7
第二章 研究方法 9
2-1 FEM-DEM雙向耦合 9
2-1-1 FEM模型 9
2-1-2 DEM模型 10
2-1-3 FEM-DEM雙向耦合 12
2-1-4 臨界時間步 13
2-2 含顆粒阻尼器鋼結構模型 14
2-2-1 含顆粒阻尼器鋼結構模型 14
2-2-2 時間步收斂性分析 16
2-2-3 網格收斂性分析 17
附表 18
附圖 20
第三章 基準測試 32
3-1 有限元素法數值模型—懸臂樑自由振動試驗 32
3-1-1系統能量平衡 32
3-1-2 懸臂樑自由振動試驗模型 33
3-2 有限元素法與離散元素法雙向耦合數值模型—鋼珠撞擊平板試驗 35
3-2-1 Hertz contact理論 35
3-2-2 電流法實驗架設 36
3-2-3 鋼珠落擊平板模型 37
附表 39
附圖 41
第四章 結果與討論 47
4-1 顆粒材料對減振效果之影響 47
4-1-1 三個取樣點之位移與速度分析 47
4-1-2 位移、速度與系統動能之RMS分析 48
4-1-3 頻譜分析 49
4-2 顆粒粒徑對減振效果之影響 50
4-2-1 三個取樣點之位移與速度分析 51
4-2-2 位移、速度與系統動能之RMS分析 51
4-3 顆粒填充率對減振效果之影響 52
4-3-1 三個取樣點之位移與速度分析 53
4-3-2 位移、速度與系統動能之RMS分析 54
4-4 腔體設計對減振效果之影響 54
4-4-1 三個取樣點之位移與速度分析 55
4-4-2 位移、速度與系統動能之RMS分析 55
4-5 結構物在實際地震歷時曲線下之動態分析 56
4-5-1 三個取樣點之位移與速度分析 57
4-5-2 位移、速度與系統動能之RMS分析 57
4-5-3 頻譜分析 58
附表 60
附圖 63
第五章 結論與未來展望 105
5-1 結論 105
5-2 未來展望 106
參考文獻 108
參考文獻 [1] Kai Zhang, Yanhui Xi, Tianning Chen, Zhihao Ma, Experimental studies of tuned particle damper: Design and characterization, Mechanical Systems and Signal Processing , 99 (2018) 219-228.
[2] Zheng Lu, Zixin Wang, Sami F. Masri, Xilin Lu, Particle impact dampers: Past, present, and future, Structural Control and Health Monitoring, 25.1 (2018) e2058.
[3] Yanrong Wang, Bin Liu, Aimei Tian, Wei Tang, Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions, Journal of Sound and Vibration, 371 (2016) 35-55.
[4] Zheng Lu, Xilin Lu, Sami F. Masri, Studies of the performance of particle dampers under dynamic loads, Journal of Sound and Vibration, 329.26 (2010) 5415-5433.
[5] Louis Gagnon, Marco Morandini, Gian Luca Ghiringhelli, A review of particle damping modeling and testing, Journal of Sound and Vibration, 459 (2019) 114865.
[6] Braj Bhushan Prasad, Fabian Duvigneau, Daniel Juhre, Elmar Woschke, Damping performance of particle dampers with different granular materials and their mixtures, Applied Acoustics, 200 (2022) 109059.
[7] N. Meyer, R. Seifried, Numerical and experimental investigations in the damping behavior of particle dampers attached to a vibrating structure, Computers & structures, 238 (2020) 106281.
[8] Yu-Ren Wu, Yun-Chi Chung, I-Cheng Wang, Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles, Mechanism and Machine Theory, 159 (2021) 104257.
[9] Zheng Lu, Sami F. Masri, Xilin Lu, Parametric studies of the performance of particle dampers under harmonic excitation, Structural Control and Health Monitoring, 18.1 (2011) 79-98.
[10] Zheng Lu, Xilin Lu, Huanjun Jiang, Discrete element method simulation and experimental validation of particle damper system, Engineering Computations, 31.4 (2014) 810-823.
[11] Jie Liu, Tianyang Deng, Xingshan Chang, Feng Sun, Jianhui Zhou, Research on longitudinal vibration suppression of underwater vehicle shafting based on particle damping, Scientific Reports, 13.1 (2023) 3047.
[12] Yun-Chi Chung, Achmad Arifin, Yu-Ren Wu, Chia-Yuan Wang, Dynamic investigation and experimental validation of a gear transmission system with damping particles, Mechanics Based Design of Structures and Machines, (2023) 1-21.
[13] Tobias Ehlersa, Marcus Oela, Sebastian Tatzkob, Gleb Kleymanb, Jens Niedermeyera, J¨org Wallaschekb, Roland Lachmayera, Design Guidelines for Additive Manufactured Particle Dampers: A Review, Procedia CIRP, 119 (2023) 891-896.
[14] T. Ehlers, S. Tatzko, J. Wallaschek, R. Lachmayer, Design of particle dampers for additive manufacturing, Additive Manufacturing, 38 (2021) 101752.
[15] O. Scott-Emuakpor, J. Beck, B. Runyon, T. George, Determining unfused powder threshold for optimal inherent damping with additive manufacturing, Additive Manufacturing, 38 (2021) 101739.
[16] T. K¨unneke, D. Zimmer, Design rules for additive manufactured particle dampers, Konstruktion, 73 (11-12) (2021) 72–78.
[17] T. Ehlers, R. Lachmayer, Design rules for laser beam melted particle dampers, Proceedings of the Design Society, 2 (2022) 2443–2452.
[18] A. Hussein, L. Hao, C. Yan, R. Everson, P. Young, Advanced lattice support structures for metal additive manufacturing, Journal of Materials Processing Technology, 213 (7) (2013) 1019–1026.
[19] Nazeer Ahmad, R. Ranganath, Ashitava Ghosal, Modeling and experimental study of a honeycomb beam filled with damping particles, Journal of Sound and Vibration, 391 (2017) 20-34.
[20] Honghu Guo, Riku Yoneoka, Akihiro Takezawa, Influence of cavity partition on the damping performance of additively manufactured particle dampers, Powder Technology, 439 (2024) 119675.
[21] Tobias Ehlers, Sebastian Tatzko, Jorg Wallaschek, Roland Lachmayer, Design of particle dampers for additive manufacturing, Additive Manufacturing, 38 (2021) 101752.
[22] Zheng Lu, Xiaoyi Chen, Dingchang Zhang, Kaoshan Dai1, Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation, Earthquake Engineering & Structural Dynamics, 46.5 (2017) 697-714.
[23] Zheng Lu, Xilin Lu, Wensheng Lu, Sami F. Masri, Shaking table test of the effects of multi‐unit particle dampers attached to an MDOF system under earthquake excitation, Earthquake Engineering & Structural Dynamics, 41.5 (2012) 987-1000.
[24] Zheng Lu, Xilin Lu, Wensheng Lu, Sami F. Masri, Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads, Journal of Sound and Vibration, 331.9 (2012) 2007-2022.
[25] Botan Shen, Weibing Xu, JinWang, Yanjiang Chen, Weiming Yan, Jianhui Huang, Zhenyun Tang, Seismic control of super high‐rise structures with double‐layer tuned particle damper, Earthquake Engineering & Structural Dynamics, 50.3 (2021) 791-810.
[26] Farzad Naeim, Marshall Lew, Lauren D. Carpenter, Nabih F. Youssef, Fabian Rojas, G. Rodolfo Saragoni, Macarena Schachter Adaros, Performance of tall buildings in Santiago, Chile during the 27 February 2010 offshore Maule, Chile earthquake, The Structural Design of Tall and Special Buildings, 20.1 (2011) 1-16.
[27] Shutong Liu, Haochen Li, Fengyu Zhang, Zheng Lu, Shutong Yang, Peizhen Li, The optimum design of particle tuned mass damper for structural seismic control considering soil-structure interaction, Journal of Vibration and Control, 30.7-8 (2024) 1449-1463.
[28] Shutong Liu, Zheng Lu, Peizhen Li, Wenyang Zhang, Ertugrul Taciroglu, Effectiveness of particle tuned mass damper devices for pile‐supported multi‐story frames under seismic excitations, Structural Control and Health Monitoring, 27.11 (2020) e2627.
[29] Weiming Yan, Weibing Xu, Jin Wang, Yanjiang Chen, Experimental research on the effects of a tuned particle damper on a viaduct system under seismic loads, Journal of Bridge Engineering, 19.3 (2014) 04013004.
[30] Zhenyuan Luo, Weiming Yan, Weibing Xu, Qinfei Zheng, Baoshun Wang, Experimental research on the multilayer compartmental particle damper and its application methods on long-period bridge structures, Frontiers of Structural and Civil Engineering, 13 (2019) 751-766.
[31] Zheng Lu, Qianqian Zhang, Qiaoqiao Fan, Qi Li, Studies on dissipative characteristics and equivalent model of particle damper in railway application, Journal of Sound and Vibration, 560 (2023) 117788.
[32] 何俊頡, PVDF薄膜應用於矩形平板結構的動態響應與波源歷時之數值分析與實驗量測, 論文, 國立中央大學, (2022).
[33] S. C. Hunter, Energy absorbed by elastic waves during impact, Journal of the Mechanics and Physics of Solids, 5.3 (1957) 162-171.
[34] Genda Chen, Member, ASCE, Jingning Wu, Student Member, ASCE, Optimal placement of multiple tune mass dampers for seismic structures, Journal of Structural Engineering, 127.9 (2001) 1054-1062.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明