參考文獻 |
1. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Society of Automotive Engineers, Warrendale, Pennsylvania, USA, 2020.
2. M. Taherishargh, B. Katona, T. Fidler, and I. N. Orbulov, “Fatigue Properties of Expanded Perlite/Aluminum Syntactic Foams,” Journal of Composite Materials, Vol. 51, pp. 773-781, 2017.
3. H. Pinto, S. R. Arwade, and P. Veale, “Response of Open Cell Aluminum Foams to Fully Reversed Cyclic Loading,” Journal of Engineering Mechanics, Vol. 137, pp. 911-918, 2011.
4. J. Banhart, “Manufacture, Characterization and Application of Cellular Metals and Metal Foams,” Progress in Materials Science, Vol. 46, pp. 559-632, 2001.
5. H. Shen, S. M. Oppenheimer, D. C. Dunald, and L. C. Brinson, “Numerical Modeling of Pore Size and Distribution in Foamed Titanium,” Mechanics of Materials, Vol. 38, pp. 933-944, 2006.
6. C. Simoneau, V. Brailovski, and P. Terriault, “Design, Manufacture and Tensile Properties of Stochastic Porous Metallic Structures,” Mechanics of Materials, Vol. 94, pp. 26-37, 2016.
7. G. Lu and T. Yu, Energy Absorption of Structures and Materials, Woodhead, Cambridgeshire, England, 2003.
8. V. Sharma, F. Zivic, N. Grujovic, N. Babcsan, and J. Babcsan, “Numerical Modeling and Experimental Behavior of Closed-Cell Aluminum Foam Fabricated by the Gas Blowing Method under Compressive Loading,” Materials, Vol. 12, 1582, 2019.
9. Duocel, Made to Order Duocel® Aluminum Foam Cylinder, https://duocelfoam.com/product/made-to-order-aluminum-cylinder/, accessed on February 2, 2024.
10. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, “ALPORAS Aluminum Foam: Production Process, Properties, and Applications,” Advanced Engineering Materials, Vol. 2, pp. 179-83, 2000.
11. I. Kroupová, M. Gawronová, P. Lichý, V. Merta, F. Radkovský, K. Janovská, I. Nguyenová, J. Beňo, T. Obzina, I. Vasková, I. Lána, and J. Rygel, “Preparation of Cast Metallic Foams with Irregular and Regular Inner Structure,” Materials, Vol. 14, 6968, 2021.
12. T. Wan, G.-Q. Liang, Z.-M. Wang, C.-X. Zhou, and Y. Liu, “Fabrication and Compressive Behavior of Open-Cell Aluminum Foams via Infiltration Casting Using Spherical CaCl₂ Space-Holders,” China Foundry, Vol. 19, pp. 89-98, 2022.
13. J. O. Osorio-Hernández, M. A. Suarez, R. Goodall, G. A. Lara-Rodriguez, I. Alfonso, and I. A. Figueroa, “Manufacturing of Open-Cell Mg Foams by Replication Process and Mechanical Properties,” Materials and Design, Vol. 64, pp. 136-141, 2014.
14. A. Rabiei and A. T. O’Neill, “A Study on Processing of a Composite Metal Foam via Casting,” Materials Science and Engineering: A, Vol. 404, pp. 159-164, 2005.
15. K. M. Hurysz, J. L. Clark, A. R. Nagel, C. U. Hardwicke, K. J. Lee, J. K. Cochran, and T. H. Sanders Jr, “Steel and Titanium Hollow Sphere Foams,” MRS Online Proceedings Library, Vol. 521, pp. 191-203, 1998.
16. I. Jeon, T. Asahina, K.-J. Kang, S. Im, and T.-J. Lu, “Finite Element Simulation of the Plastic Collapse of Closed-Cell Aluminum Foams with X-ray Computed Tomography,” Mechanics of Materials, Vol. 42, pp. 227-236, 2010.
17. Z. G. Xu, J. W. Fu, T. J. Luo, and Y. S. Yang, “Effects of Cell Size on Quasi-Static Compressive Properties of Mg Alloy Foams,” Materials and Design, Vol. 34, pp. 40-44, 2012.
18. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom, 1997.
19. C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and M. Mabuchi, “Compressibility of Porous Magnesium Foam: Dependency on Porosity and Pore Size,” Materials Letters, Vol. 58, pp. 357-360, 2004.
20. X. C. Xia, X. W. Chen, Z. Zhang, X. Chen, W. M. Zhao, B. Liao, and B. Hur, “Effects of Porosity and Pore Size on the Compressive Properties of Closed-Cell Mg Alloy Foam,” Journal of Magnesium and Alloys, Vol. 1, pp. 330-335, 2013.
21. M. M. Basit and S. S. Cheon, “Time-Dependent Crashworthiness of Polyurethane Foam,” Mechanics of Time-Dependent Materials, Vol. 23, pp. 207-221, 2019.
22. A. Paul and U. Ramamurty, “Strain Rate Sensitivity of a Closed-Cell Aluminum Foam,” Materials Science and Engineering, Vol. 281, pp. 1-7, 2000.
23. X. Zhang, R. Wang, J. Liu, X. Li, and G. Jia, “A Numerical Method for the Ballistic Performance Prediction of the Sandwiched Open Cell Aluminum foam under Hypervelocity Impact,” Aerospace Science and Technology, Vol. 75, pp. 254-260, 2018.
24. K. S. Verma, S. Panthi, and D. P. Mondal, “Simulation and Modeling of Different Cell Shapes for Closed-Cell LM-13 Alloy Foam for Compressive Behavior,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 24, 0026, 2021.
25. Y. Xia, J. Shi, and Y. Mu, “Dynamic Response and Numerical Simulation of Closed-Cell Al Foams,” Materials, Vol. 15, 8207, 2022.
26. M. Vesenjak, A. Öchsner, M. Hribersek, and Z. Ren, “Behaviour of Cellular Structures with Fluid Fillers under Impact Loading,” Materials Science and Engineering, Vol. 281, pp. 1-7, 2000.
27. I. Jeon and T. Asahina, “The Effect of Structural Defects on the Compressive Behavior of Closed-Cell Al Foam,” Acta Materialia, Vol. 53, pp. 3415-3243, 2005.
28. S. Youssef, E. Maire, and R. Gaertner, “Finite Element Modelling of the Actual Structure of Cellular Materials Determined by X-Ray Tomography,” Acta Materialia, Vol. 53, pp. 719-730, 2005.
29. X. Shi, S. Liu, H. Nie, G. Lu, and Y. Li, “Study of Cell Irregularity Effects on the Compression of Closed‑Cell Foams,” International Journal of Mechanical Sciences, Vol. 135, pp. 215-225, 2018.
30. Y. Song, Z. Wang, L. Zhao, and J. Luo, “Dynamic Crushing Behavior of 3D Closed-Cell Foams Based on Voronoi Random Model,” Materials and Design, Vol. 31, pp.4281-4289, 2010.
31. M.-C. Chen, Effect of Hollow Sphere and Heat Treatment on the Microstructures and Mechanical Properties of A201 Aluminum Alloy Foams, Ph.D. Thesis, National Central University, Tao-Yuan, Taiwan, 2023.
32. Q.-W. Xu, Effects of Hollow Sphere Modification, Size and Heat Treatment on the Microstructure and Compression Properties of Al-Cu-Mg-Ag Syntactic Foam, Ph.D. Thesis Proposal, National Central University, Tao-Yuan, Taiwan, 2024.
33. Y. Sugimura, J. Meyer, M. Y. He, H. Bart-Smith, J. Grenstedt, and A. G. Evans, “On the Mechanical Performance of Closed Cell Al Alloy Foams,” Acta Materialia, Vol. 45, pp. 5245-5259, 1997.
34. Abaqus, Abaqus documentation Version 6.6 Documentation,
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt03ch06s03at07.html, accessed on April 21, 2024.
35. Simutech Solution Corp, Abaqus Tips:質量放大 Mass Scaling 設定,
https://oss.jishulink.com/upload/202106/390e5dba238c4e649e8e83488f7ab0f7.pdf,
accessed on April 30, 2024.
36. A. Hossinger-Kalteis, M. Reiter, M. Jerabek, and Z. Major, “Overview and Comparison of Modelling Methods for Foams,” Journal of Cellular Plastics, Vol. 57, pp.951-1001, 2020.
37. C.-C. Miao, Compressive Response and FE Modeling of Closed-Cell Aluminum, M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2014.
38. Y.-C. Yang, Dynamic Response of Closed-Cell Aluminum Foams, M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2014.
39. C.-Y. Guan, Study on Mechanical Properties of Multi-Layer Composite Sandwich Plate, M.S. Thesis, Harbin Engineering University, Harbin, China, 2019.
40. Abaqus, Crushable foam plasticity models,
https://docs.software.vt.edu/abaqusv2022/English/SIMACAEMATRefMap/simamat-c-crushfoam.htm, accessed on May 17, 2024.
41. M. Garcia-Avila, M. Portanova, and A. Rabiei, “Ballistic Performance of Composite Metal Foams,” Composite Structures, Vol. 125, pp. 202-211, 2015.
42. A. Dmitruk, K. Naplocha1, J. Pach, D. Pyka, G. Ziółkowski, M. Bocian, and K. Jamroziak, “Experimental and Numerical Study of Ballistic Resistance of Composites Based on Sandwich Metallic Foams,” Applied Composite Materials, Vol. 28, pp. 2021-2044, 2021.
43. H. S. Abdullahi, Y. Liang, and S. Gao, “Predicting the Elastic Properties of Closed‑Cell Aluminum Foams: a Mesoscopic Geometric Modeling Approach,” SN Applied Sciences, Vol. 1, pp.1, 2019.
44. Q. M. Li, I. Magkiriadis, and J. J. Harrigan, “Compressive Strain at the Onset of Densification of Cellular Solids,” Journal of Cellular Plastics, Vol. 42, pp. 371-392, 2006.
45. J.W. Klintworth and W.J. Stronge, “Elasto-Plastic Yield Limits and Deformation Laws for Transversely Crushed Honeycombs,” International Journal of Mechanical Sciences, Vol. 30, pp. 273-292, 1988.
46. K.S. Verma, D. Muchhala, S. K. Panthi, and D. P. Mondal, “Influences of Cell Size, Cell Wall Thickness and Cell Circularity on the Compressive Responses of Closed-Cell Aluminum Foam and Its FEA Analysis,” International Journal of Metalcasting, Vol. 16, pp. 798-813, 2021.
47. M. A. Kader, M. A. Islam, M. Saadatfar, P. J. Hazell, A. D. Brown, S. Ahmed, and D. P. Mondal, “Macro and Micro Collapse Mechanisms of Closed-Cell Aluminium Foams During Quasi-Static Compression,” Materials & Design, Vol. 118, pp. 11-21, 2017. |