博碩士論文 111323023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:18.221.243.29
姓名 林奕辰(Yi-Chen Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多孔金屬材料機械行為模擬研究
(Simulation of Mechanical Behavior of Metallic Foams)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 金屬孔洞材料由於其輕量化和高能量吸收能力,在國防領域中展現出顯著的應用潛力。這種材料能夠有效吸收和分散衝擊能量,因此被廣泛應用於軍事裝備和防禦系統。由於孔洞材料的微觀結構不易直接觀察,因此使用有限元素分析透過數值模擬來評估孔洞材料在各種負載條件下的行為,不僅可以節省時間和成本,還能提供對材料內部應力分佈和變形過程的深入洞察,從而有助於優化結構設計和改進其能量吸收特性。
本研究主要探討封閉式多孔金屬材料之機械行為,內容包含壓縮實驗及數值模擬兩大部分。在實驗方面,多孔金屬試片藉由施加不同應變速率的壓力負載觀察其機械行為的應變速率敏感性。實驗結果顯示,隨著應變速率的提高,材料的降伏應力、平台應力以及能量吸收能力均有所增加。在數值模擬方面採用有限元軟體ABAQUS/Explicit 建立多孔金屬材料的數值模型,模擬涵蓋兩種不同的幾何模型,一種是無內部孔隙的實心結構,另一種則是具有規則分佈孔隙的結構。模型的材料性質採用塊材的數值,應力應變曲線則是由實驗壓縮孔洞材料所獲取的實際資料。在塑性模型的選用方面,分別採用了等向性硬化(isotropic hardening)和可壓縮泡沫(crushable foam)兩種模型,並加入材料延性損傷準則,使模擬結果更接近實驗數據。此外,本研究亦使用隨機孔洞分佈之不規則模型,分析孔洞分佈、孔洞大小及孔隙率對空孔結構機械行為之影響,結果顯示較低的孔隙率及較小的孔徑對於提高泡沫材料的壓縮機械性能表現有正面的效益。最終比較規則分佈孔洞的結構與隨機分佈孔洞的結構機械行為及變形機制之差異,結果顯示規則分布孔洞的結構展示了均勻的塑性變形,相比之下,隨機分佈孔洞的結構由於孔洞分佈的隨機性,可能導致較薄的細胞壁,從而引發彎曲及塑性塌陷等現象,進而降低泡沫結構的強度和剛性。而在這兩種模型中,薄孔壁是主要發生變形和塌陷的區域。
摘要(英) The application of metal foams with internal pores has shown significant potential in the defense industry due to their lightweight and high energy absorption capabilities. These materials effectively absorb and dissipate impact energy, thus widely utilized in military equipment and defense systems. Due to the microscopic structure of porous materials being challenging to observe directly, finite element method (FEM) is able to assess the mechanical behavior of the foam materials under various load conditions through numerical simulation. This method not only saves time and cost but also provides in-depth insights into the internal stress distribution and deformation process, thereby helping to optimize structural design and improve its energy absorption characteristics.
This study primarily investigates the mechanical behavior of metallic foams through both compression experiments and numerical simulations. In the experimental section, specimens of a metallic foam were used in compression test by applying various strain rates. The results demonstrated that the yield stress, plateau stress, and energy absorption capacity increased with the strain rate. For numerical simulations, the FEM code ABAQUS/Explicit was used to establish numerical models of a porous metal. Two geometric models were considered, namely one without internal pores and the other with regularly distributed pores. The material properties imported were from bulk material data, while the stress-strain data were taken from the compression test results of the given foam material. Moreover, two plasticity models, namely isotropic hardening and crushable foam models, were employed in the FEM simulation. A ductile damage criterion was also implemented to align the simulation more closely to the experimental data. Additionally, the effects of pore distribution, pore size, and porosity on the mechanical response of porous structure were investigated using a geometric model of randomly distributed pores. The results indicate that a lower porosity and a smaller pore size are beneficial for enhancing the structural performance and integrity of foam materials. Finally, the comparison between structures with regularly distributed pores and those with randomly distributed pores reveals differences in mechanical behavior and deformation mechanisms. The results show that structures with regularly distributed pores exhibit uniform plastic deformation. In contrast, structures with randomly distributed pores, due to the randomness in pore distribution, may result in thinner cell walls, leading to phenomena such as bending and plastic collapse, which significantly reduce the strength and rigidity of the foamed structure. In both models, thin cell walls predominantly undergo deformation and collapse.
關鍵字(中) ★ 有限元素模擬
★ 多孔金屬材料
★ 準靜態壓縮行為
關鍵字(英) ★ ABAQUS
★ Metallic foam
★ quasi-static compression test
論文目次 ABSTRACT I
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
1. INTRODUCTION 1
1.1 Foam Material Overview 1
1.1.1 Application of cellular material 1
1.1.2 Classification of cellular material 2
1.1.3 Fabrication of cellular material 4
1.2 Mechanical Behavior of Foam Material 8
1.3 Numerical Model 12
1.4 Purpose 15
2. EXPERIMENT 17
3. NUMERICAL MODELING 21
3.1 Finite Element Method 21
3.2 Design Variables for Cellular Solids 23
3.2.1 Material properties 24
3.2.2 Relative density 29
3.2.3 Geometric model 30
3.3 Simulating Cases 32
3.3.1 Quasi-Static Compression 32
4. RESULTS AND DISCUTION 33
4.1 Quasi-Static Compression Test 33
4.2 Finite Element Modelling Validation 39
4.2.1 Comparison with previous studies 39
4.2.2 Comparison of experiment and FEM simulation 40
4.2.3 Ductile damage criterion 44
4.3 Irregular Pore Geometry and Size 50
4.4 Comparison of Regularly and Randomly Distributed Pores 62
5. CONCLUSIONS AND FUTURE WORK 73
5.1 Conclusions 73
5.2 Future Work 74
REFERENCES 75
參考文獻 1. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Society of Automotive Engineers, Warrendale, Pennsylvania, USA, 2020.
2. M. Taherishargh, B. Katona, T. Fidler, and I. N. Orbulov, “Fatigue Properties of Expanded Perlite/Aluminum Syntactic Foams,” Journal of Composite Materials, Vol. 51, pp. 773-781, 2017.
3. H. Pinto, S. R. Arwade, and P. Veale, “Response of Open Cell Aluminum Foams to Fully Reversed Cyclic Loading,” Journal of Engineering Mechanics, Vol. 137, pp. 911-918, 2011.
4. J. Banhart, “Manufacture, Characterization and Application of Cellular Metals and Metal Foams,” Progress in Materials Science, Vol. 46, pp. 559-632, 2001.
5. H. Shen, S. M. Oppenheimer, D. C. Dunald, and L. C. Brinson, “Numerical Modeling of Pore Size and Distribution in Foamed Titanium,” Mechanics of Materials, Vol. 38, pp. 933-944, 2006.
6. C. Simoneau, V. Brailovski, and P. Terriault, “Design, Manufacture and Tensile Properties of Stochastic Porous Metallic Structures,” Mechanics of Materials, Vol. 94, pp. 26-37, 2016.
7. G. Lu and T. Yu, Energy Absorption of Structures and Materials, Woodhead, Cambridgeshire, England, 2003.
8. V. Sharma, F. Zivic, N. Grujovic, N. Babcsan, and J. Babcsan, “Numerical Modeling and Experimental Behavior of Closed-Cell Aluminum Foam Fabricated by the Gas Blowing Method under Compressive Loading,” Materials, Vol. 12, 1582, 2019.
9. Duocel, Made to Order Duocel® Aluminum Foam Cylinder, https://duocelfoam.com/product/made-to-order-aluminum-cylinder/, accessed on February 2, 2024.
10. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, “ALPORAS Aluminum Foam: Production Process, Properties, and Applications,” Advanced Engineering Materials, Vol. 2, pp. 179-83, 2000.
11. I. Kroupová, M. Gawronová, P. Lichý, V. Merta, F. Radkovský, K. Janovská, I. Nguyenová, J. Beňo, T. Obzina, I. Vasková, I. Lána, and J. Rygel, “Preparation of Cast Metallic Foams with Irregular and Regular Inner Structure,” Materials, Vol. 14, 6968, 2021.
12. T. Wan, G.-Q. Liang, Z.-M. Wang, C.-X. Zhou, and Y. Liu, “Fabrication and Compressive Behavior of Open-Cell Aluminum Foams via Infiltration Casting Using Spherical CaCl₂ Space-Holders,” China Foundry, Vol. 19, pp. 89-98, 2022.
13. J. O. Osorio-Hernández, M. A. Suarez, R. Goodall, G. A. Lara-Rodriguez, I. Alfonso, and I. A. Figueroa, “Manufacturing of Open-Cell Mg Foams by Replication Process and Mechanical Properties,” Materials and Design, Vol. 64, pp. 136-141, 2014.
14. A. Rabiei and A. T. O’Neill, “A Study on Processing of a Composite Metal Foam via Casting,” Materials Science and Engineering: A, Vol. 404, pp. 159-164, 2005.
15. K. M. Hurysz, J. L. Clark, A. R. Nagel, C. U. Hardwicke, K. J. Lee, J. K. Cochran, and T. H. Sanders Jr, “Steel and Titanium Hollow Sphere Foams,” MRS Online Proceedings Library, Vol. 521, pp. 191-203, 1998.
16. I. Jeon, T. Asahina, K.-J. Kang, S. Im, and T.-J. Lu, “Finite Element Simulation of the Plastic Collapse of Closed-Cell Aluminum Foams with X-ray Computed Tomography,” Mechanics of Materials, Vol. 42, pp. 227-236, 2010.
17. Z. G. Xu, J. W. Fu, T. J. Luo, and Y. S. Yang, “Effects of Cell Size on Quasi-Static Compressive Properties of Mg Alloy Foams,” Materials and Design, Vol. 34, pp. 40-44, 2012.
18. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom, 1997.
19. C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and M. Mabuchi, “Compressibility of Porous Magnesium Foam: Dependency on Porosity and Pore Size,” Materials Letters, Vol. 58, pp. 357-360, 2004.
20. X. C. Xia, X. W. Chen, Z. Zhang, X. Chen, W. M. Zhao, B. Liao, and B. Hur, “Effects of Porosity and Pore Size on the Compressive Properties of Closed-Cell Mg Alloy Foam,” Journal of Magnesium and Alloys, Vol. 1, pp. 330-335, 2013.
21. M. M. Basit and S. S. Cheon, “Time-Dependent Crashworthiness of Polyurethane Foam,” Mechanics of Time-Dependent Materials, Vol. 23, pp. 207-221, 2019.
22. A. Paul and U. Ramamurty, “Strain Rate Sensitivity of a Closed-Cell Aluminum Foam,” Materials Science and Engineering, Vol. 281, pp. 1-7, 2000.
23. X. Zhang, R. Wang, J. Liu, X. Li, and G. Jia, “A Numerical Method for the Ballistic Performance Prediction of the Sandwiched Open Cell Aluminum foam under Hypervelocity Impact,” Aerospace Science and Technology, Vol. 75, pp. 254-260, 2018.
24. K. S. Verma, S. Panthi, and D. P. Mondal, “Simulation and Modeling of Different Cell Shapes for Closed-Cell LM-13 Alloy Foam for Compressive Behavior,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 24, 0026, 2021.
25. Y. Xia, J. Shi, and Y. Mu, “Dynamic Response and Numerical Simulation of Closed-Cell Al Foams,” Materials, Vol. 15, 8207, 2022.
26. M. Vesenjak, A. Öchsner, M. Hribersek, and Z. Ren, “Behaviour of Cellular Structures with Fluid Fillers under Impact Loading,” Materials Science and Engineering, Vol. 281, pp. 1-7, 2000.
27. I. Jeon and T. Asahina, “The Effect of Structural Defects on the Compressive Behavior of Closed-Cell Al Foam,” Acta Materialia, Vol. 53, pp. 3415-3243, 2005.
28. S. Youssef, E. Maire, and R. Gaertner, “Finite Element Modelling of the Actual Structure of Cellular Materials Determined by X-Ray Tomography,” Acta Materialia, Vol. 53, pp. 719-730, 2005.
29. X. Shi, S. Liu, H. Nie, G. Lu, and Y. Li, “Study of Cell Irregularity Effects on the Compression of Closed‑Cell Foams,” International Journal of Mechanical Sciences, Vol. 135, pp. 215-225, 2018.
30. Y. Song, Z. Wang, L. Zhao, and J. Luo, “Dynamic Crushing Behavior of 3D Closed-Cell Foams Based on Voronoi Random Model,” Materials and Design, Vol. 31, pp.4281-4289, 2010.
31. M.-C. Chen, Effect of Hollow Sphere and Heat Treatment on the Microstructures and Mechanical Properties of A201 Aluminum Alloy Foams, Ph.D. Thesis, National Central University, Tao-Yuan, Taiwan, 2023.
32. Q.-W. Xu, Effects of Hollow Sphere Modification, Size and Heat Treatment on the Microstructure and Compression Properties of Al-Cu-Mg-Ag Syntactic Foam, Ph.D. Thesis Proposal, National Central University, Tao-Yuan, Taiwan, 2024.
33. Y. Sugimura, J. Meyer, M. Y. He, H. Bart-Smith, J. Grenstedt, and A. G. Evans, “On the Mechanical Performance of Closed Cell Al Alloy Foams,” Acta Materialia, Vol. 45, pp. 5245-5259, 1997.
34. Abaqus, Abaqus documentation Version 6.6 Documentation,
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt03ch06s03at07.html, accessed on April 21, 2024.
35. Simutech Solution Corp, Abaqus Tips:質量放大 Mass Scaling 設定,
https://oss.jishulink.com/upload/202106/390e5dba238c4e649e8e83488f7ab0f7.pdf,
accessed on April 30, 2024.
36. A. Hossinger-Kalteis, M. Reiter, M. Jerabek, and Z. Major, “Overview and Comparison of Modelling Methods for Foams,” Journal of Cellular Plastics, Vol. 57, pp.951-1001, 2020.
37. C.-C. Miao, Compressive Response and FE Modeling of Closed-Cell Aluminum, M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2014.
38. Y.-C. Yang, Dynamic Response of Closed-Cell Aluminum Foams, M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2014.
39. C.-Y. Guan, Study on Mechanical Properties of Multi-Layer Composite Sandwich Plate, M.S. Thesis, Harbin Engineering University, Harbin, China, 2019.
40. Abaqus, Crushable foam plasticity models,
https://docs.software.vt.edu/abaqusv2022/English/SIMACAEMATRefMap/simamat-c-crushfoam.htm, accessed on May 17, 2024.
41. M. Garcia-Avila, M. Portanova, and A. Rabiei, “Ballistic Performance of Composite Metal Foams,” Composite Structures, Vol. 125, pp. 202-211, 2015.
42. A. Dmitruk, K. Naplocha1, J. Pach, D. Pyka, G. Ziółkowski, M. Bocian, and K. Jamroziak, “Experimental and Numerical Study of Ballistic Resistance of Composites Based on Sandwich Metallic Foams,” Applied Composite Materials, Vol. 28, pp. 2021-2044, 2021.
43. H. S. Abdullahi, Y. Liang, and S. Gao, “Predicting the Elastic Properties of Closed‑Cell Aluminum Foams: a Mesoscopic Geometric Modeling Approach,” SN Applied Sciences, Vol. 1, pp.1, 2019.
44. Q. M. Li, I. Magkiriadis, and J. J. Harrigan, “Compressive Strain at the Onset of Densification of Cellular Solids,” Journal of Cellular Plastics, Vol. 42, pp. 371-392, 2006.
45. J.W. Klintworth and W.J. Stronge, “Elasto-Plastic Yield Limits and Deformation Laws for Transversely Crushed Honeycombs,” International Journal of Mechanical Sciences, Vol. 30, pp. 273-292, 1988.
46. K.S. Verma, D. Muchhala, S. K. Panthi, and D. P. Mondal, “Influences of Cell Size, Cell Wall Thickness and Cell Circularity on the Compressive Responses of Closed-Cell Aluminum Foam and Its FEA Analysis,” International Journal of Metalcasting, Vol. 16, pp. 798-813, 2021.
47. M. A. Kader, M. A. Islam, M. Saadatfar, P. J. Hazell, A. D. Brown, S. Ahmed, and D. P. Mondal, “Macro and Micro Collapse Mechanisms of Closed-Cell Aluminium Foams During Quasi-Static Compression,” Materials & Design, Vol. 118, pp. 11-21, 2017.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2024-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明