博碩士論文 111323131 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.133.124.123
姓名 林泊邑(Po-yi Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬有機骨架粉末於擠出滾圓造粒技術應用之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 本論文主要以金屬有機骨架材料(MOF)作為實驗材料,並使用羧甲基纖維素鈉(CMC-NA)作為賦形劑,實驗設備為工研院提供濕式籃式進料擠出機和球形搓圓機,將對MOF粉體進行擠出滾圓(Extrusion Spheronization)的濕式造粒。通過調整濕粉團水分含量、賦形劑濃度、賦形劑固含量、擠出機主軸轉速、擠出機篩網孔洞大小、滾圓機轉速、滾圓機負載量等,其最終目的在於探討擠出滾圓製程的機制,透過改變不同造粒參數來提升MOF顆粒的品值,本實驗將針對最終顆粒之尺寸分布、顆粒縱橫比、顆粒強度、顆粒速度場等探討其相關造粒機制。
實驗結果顯示水分含量為擠出滾圓造粒相當關鍵的參數,當水分含量過低時,擠出物會變得酥脆,無法順利形成球形顆粒,導致圓柱狀擠出物破裂成細粉。若水分含量過高,擠出物會呈現黏滯狀態,使顆粒過快地互相黏結,形成過大的團聚顆粒。只有在水分含量適中時,擠出物才會具有適合塑形的塑性,能夠在滾圓過程中逐漸形成均勻且緻密的球形顆粒。此外,擠出機主軸轉速、篩網孔洞尺寸、滾圓機負載量等操作參數也對合格的MOF顆粒品質具有重要影響,這些參數在本文也將更詳細的討論。
摘要(英) This thesis primarily focuses on using Metal-Organic Framework (MOF) materials as experimental subjects, with sodium carboxymethyl cellulose (CMC-NA) as a binder. The experimental equipment, provided by the Industrial Technology Research Institute (ITRI), includes a wet basket-feed extruder and a spheronizer, which are used for wet granulation of MOF powders through extrusion spheronization. By adjusting various parameters such as the moisture content of the wet mass, binder concentration, binder solid content, extruder shaft speed, extruder screen size, spheronizer speed, and spheronizer load, the ultimate goal is to investigate the mechanism of the extrusion spheronization process. This is achieved by altering different granulation parameters to enhance the quality of MOF granules. This study specifically examines the granulation mechanism related to the final particle size distribution, particle aspect ratio, particle strength, and particle velocity field.
The experimental results indicate that moisture content is a crucial parameter for extrusion spheronization granulation. When the moisture content is too low, the extrudate becomes brittle and cannot form spherical granules properly, resulting in the cylindrical extrudate breaking into fine powder. Conversely, if the moisture content is too high, the extrudate becomes viscous, causing the granules to stick together too quickly, leading to the formation of oversized agglomerates. Only with an appropriate moisture content does the extrudate exhibit suitable plasticity, allowing for the gradual formation of uniform and dense spherical granules during the spheronization process.Furthermore, the operating parameters such as the extruder spindle speed, screen hole size, and granulator load significantly influence the quality of the MOF granules. These parameters will be discussed in more detail in this thesis.
關鍵字(中) ★ 造粒
★ 擠出滾圓
★ 金屬有機骨架
★ 濕式擠出機
★ 球形搓圓機
★ 吸附劑
★ 除濕
★ 擠出物節點
關鍵字(英) ★ Granulation
★ Extrusion-Spheronization
★ MOF, Metal-Organic Framework
★ Wet Extruder
★ Spheronizer Machine
★ Adsorbent
★ Dehumidification
★ Extrudate Fractures
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
附圖目錄 VI
附表目錄 XVII
符號說明 XVIII
第一章 簡介 1
1-1前言 1
1-1-1造粒技術與機制 1
1-1-2擠出滾圓造粒技術 2
1-1-2-1擠出技術 3
1-1-2-2滾圓技術 4
1-1-3滾圓顆粒流動性分析 6
1-2研究動機 8
第二章 實驗方法與原理 17
2-1實驗設備與材料 17
2-1-1金屬有機骨架材料 17
2-1-2賦形劑CMC-NA 18
2-1-3擠出滾圓裝置 18
2-1-4重量的精準控制 19
2-2實驗流程 19
2-1-5混合設備 20
2-1-5-1 抬頭攪拌機 20
2-1-5-2電動攪拌機 20
2-1-6影像拍攝 21
2-3分析方法 21
2-3-1水分含量檢驗 21
2-3-2檢驗顆粒尺寸 22
2-3-3檢驗顆粒硬度和脆性 22
2-3-4檢驗顆粒堆積密度 22
2-3-5速度場分析 23
2-3-6顆粒真圓度分析 24
2-3-7粉體性質分析 24
第三章 結果與討論 37
3-1 初始原料對後續擠出滾圓之探討 38
3-1-1 初始粉末粒徑尺寸對擠出滾圓的影響 38
3-1-2 賦形劑濃度與固含量對擠出滾圓的影響 39
3-2 水分含量對擠出滾圓之探討 40
3-3 擠出參數對結果之探討 41
3-3-1 擠出三次與擠出一次的比較 42
3-3-2 不同Wdo擠出一次的比較 44
3-3-3 擠出機主軸轉速對擠出滾圓的影響 45
3-3-4 擠出機篩網孔洞對擠出滾圓的影響 49
3-4 滾圓參數對結果之探討 51
3-4-1 滾圓機負載量對擠出滾圓的影響 52
3-4-2 滾圓時添加額外粉末對擠出滾圓的影響 57
第四章 結論與建議 116
參考文獻 118
參考文獻 1. Iveson, S. M., Litster, J. D., Hapgood, K. and Ennis, B. J.,“ Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review,” Powder Technology, Vol. 117 , pp. 3-39, 2001.
2. Vonk, P., “Growth mechanisms of high-shear pelletisation,” International Journal of Pharmaceutics, Vol. 157.1, pp. 93-102, 1997.
3. Wilson, D. I. and Rough, S. L., “Extrusion-spheronisation,” Handbook of Powder Technology, Vol. 11, Elsevier Science BV, pp. 189-217, 2007.
4. Reynolds, A. D., “A new technique for the production of spherical particles,” Manufacturing Chemist and Aerosol News, Vol. 41, pp. 40-43, 1970.
5. Juppo, A. M., Hellen, L., Pullinen-Strander, V., Kalsta, K., Yliruusi, J., and Kristoffersson, E., “Application of mercury porosimetry in evaluation of extrusion-spheronisation process,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 44, pp. 205-214, 1997.
6. Vervaet, C., Baert, L., and Remon, J. P., “Extrusion-spheronisation A literature review,” International Journal of Pharmaceutics, Vol. 116, pp. 131-146,1995.
7. Vervaet, C., Remon, J. P., “Influence of impeller design, method of screen perforation and perforation geometry on the quality of pellets made by extrusion-spheronisation,” International Journal of Pharmaceutics, Vol.133, pp. 29-37, 1996.
8. Domanti, A. T. J., Bridgwater, J., and Trans, I., “Surface Fracture in Axisymmetric Paste Extrusion: An Experimental Study,” Chemical Engineering Research and Design, Vol. 78 (A), pp. 68-78, 2000.
9. Vervaet, C., “The influence of the extrusion screen on pellet quality using an instrumented basket extruder,” International Journal of Pharmaceutics, Vol. 107.1, pp. 29-39, 1994.
10. Rough, S. L., Wilson, D. I., “Extrudate fracture and spheronisation of microcrystalline cellulose pastes,” Journal of Materials Science, Vol. 40, pp. 4199-4219, 2005.
11. Nakahara, U.S. Patent 3277520, Jan 1966.
12. Grönig, R., Schmidt, P. C., “Entwicklungen in der pharmazeutisch-technologischen Arzneimittelforschung,” Deutscher Apotheker Verlag, pp. 39-43, 1999.
13. Harrison, P. J., Newton, J. M., Rowe, R. C., and Pharm. J., “The characterization of wet powder masses suitable for extrusion/spheronization,” Journal of Pharmacy and Pharmacology, Vol. 37, pp. 686-691, 1985.
14. Londono, C., Rojas, J., “Effect of different production variables on the physical properties of pellets prepared by extrusion-spheronization using a multivariate analysis,” Thai Journal of Pharmaceutical Sciences, Vol. 41.2, 2017.
15. Zhang, M., Li, Y., “Spheronisation of a basket screen-extruded paste using screens of different hole diameters,” Powder Technology, Vol. 299, pp. 199-209, 2016.
16. Rowe, R. C., “Spheronization: a novel pill-making process,” Pharmacy International, Vol. 6, pp. 119–123, 1985.
17. Baert, L., Vermeersch, H., Remon, J. P., Smeyers-Verbeke, J., and Massart, D. L., “Study of parameters important in the spheronisation process,” International Journal of Pharmaceutics, Vol. 96, pp. 225-229, 1993.
18. Koester, M., Willemsen, E., Krueger, C., and Thommes, M., “Systematic evaluations regarding interparticular mass transfer in spheronization,” International Journal of Pharmaceutics, Vol. 431, pp. 84-89, 2012.
19. Koester, M. and Thommes, M.,“ Analysis of particle kinematics in spheronization via particle image velocimetry,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 83(2), pp. 307-314, 2013.
20. Evers, M., Weis, D., Antonyuk, S. and Thommes, M.,“ Particle movement in the spheronizer–Experimental investigations with respect to the toroidal and poloidal direction,” Powder Technology, Vol. 404, 117452, 2022.
21. Hailian, L., Mohamed Eddaoudi, O′Keeffe, M. and Yaghi, O. M.,“ Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature, Vol. 402, pp. 276-279, 1999.
22. Bouwman, A. M., Bosma, J. C., Vonk, P., Wesselingh, J. H. A. and Frijlink, H. W., “ Which shape factor (s) best describe granules? ,” Powder Technology, Vol.146, pp.1-2. 66-72, 2004.
23. American Society for Testing and Materials (Filadelfia, Pennsylvania). ASTM D4318-17e1: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, 2018.
24. Braja, M. D., Principles of Geotechnical Engineering (10 Ed.)
25. Vollath, D., Fischer, F. D., and Holec, D.,“ Surface energy of nanoparticles–influence of particle size and structure,” Beilstein Journal of Nanotechnology, Vol.9(1), pp. 2265-2276, 2018.
26. Schæfer, T., Johnsen, D. and Johansen, A.,“ Effects of powder particle size and binder viscosity on intergranular and intragranular particle size heterogeneity during high shear granulation,” European Journal of Pharmaceutical Sciences, Vol.21(4), pp. 525-531, 2014.
27. Liu, J., Chen, Z., Zhang, F., Ji, G., Zhong, S., Wu, Y., Sun, G. and Wang, H.,“ Microstructural evolution and mechanical property of nanoparticles reinforced Al matrix composites during accumulative orthogonal extrusion process,” Materials Characterization, Vol.155, pp. 109790, 2019.
28. Sombatsompop, N., & Chaochanchaikul, K.,“ Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly (vinyl chloride)/wood sawdust composites,” Polymer International, Vol.53(9), pp.1210-1218, 2004.
29. Armstrong, R. W.,“ The influence of polycrystal grain size on several mechanical properties of materials,” Metallurgical and Materials Transactions B, Vol.1, pp.1169-1176, 1970.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2024-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明