博碩士論文 111323070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.221.243.29
姓名 江其翰(Jiang,Qi-Han)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法分析高爐添加熱壓鐵塊(HBI)對爐頂料倉填卸料行為之影響
(Study on the Effect of the Charging and Discharging Behavior After Adding Hot Briquetted Iron (HBI) to the Blast Furnace Hopper by Discrete Element Method)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 本研究首先依照煉鐵高爐的真實尺寸設計一縮小比例的冷模料倉設備,使用黃豆顆粒進行參數量測與填卸料實驗,且於EDEM軟體模擬中進行參數校正與填卸料模擬,最終比對實驗量測與模擬數據結果,以驗證模擬結果的準確性。接著以離散元素法針對一般鋼鐵公司所使用的煉鐵高爐與爐料(燒結礦、塊礦等含鐵爐料)進行建模,使用不同的填料模式、爐料配比與閥門開啟角度,模擬高爐料倉填卸料過程中各種爐料的堆積與運動行為,並探討在添加熱壓鐵塊(HBI)後對於高爐料倉內爐料填卸的影響,以找到較佳的操作參數。研究的分析包括粒徑偏析現象、體積佔有率等爐料分布情形,以及卸料總質量流率、架橋現象等料倉排料的料流行為。
研究結果顯示利用黃豆顆粒進行的縮小尺寸冷模實驗結果與模擬結果僅有在合理範圍內的些微誤差,兩者的結果相當吻合,成功驗證EDEM模擬的準確性。在高爐料倉模擬部分,使用疊料方式添加HBI後會使得HBI與燒結礦充分混合,在填料完成後HBI會分布在料堆靠上層位置,且會以分析區域的X軸近乎對稱分布,以Y軸為中心則因為料倉中積料盒位置而呈不連續分布。在卸料方面,則以出口閥門開啟角度37.5度為最佳閥門操作參數,在此開啟角度下,各HBI濃度配比的卸料時長皆會趨近理想的排料總秒數,能夠與下方旋轉滑槽佈料操作有良好銜接。隨著添加HBI濃度配比的提高,卸料的料流行為會變得相對不穩定,不過,整體來說卸料的總質量流率仍在一個相對小的區間內震盪變化,且卸料過程中沒有發生HBI卡住的架橋現象。因此,使用疊料方式添加HBI與閥門開啟角度37.5度為兩個適當的操作參數,在此操作條件下,即使添加濃度高達150 kg/THM的HBI,高爐仍然可以順利正常運作。
摘要(英) In this study, a scaled-down cold model of the hopper, proportionally designed based on the actual blast furnace hopper, is constructed for parameter measurement and charging/discharging experiments using soybean particles. The parameters are calibrated and simulated in EDEM, and experimental measurements are compared with simulation results to verify the accuracy of the simulations.
Also, the Discrete Element Method (DEM) is used to model the blast furnace and burden materials (sinter, lump ore, and iron-bearing materials). Various charging modes, burden ratios, and gate opening angles are used to simulate the stacking and movement behaviors of different burden materials during the charging and discharging processes in the blast furnace hopper. The impact of adding Hot Briquetted Iron (HBI) on the burden in the blast furnace hopper is investigated to find the optimal operating parameters. The analysis includes the distribution of burden materials such as particle size segregation, volume fraction, discharge mass flow rate, and arching phenomena.
The study results indicate that the results of the scaled-down cold model experiments using soybean particles show only slight deviations within a reasonable range from the cold model simulation results. The agreement between experimental and simulation results validates the accuracy of the EDEM simulations. Moreover, adding HBI using the layer charging method results in thorough mixing of HBI and sinter. After charging, HBI is distributed in the upper layer of the burden pile and shows an almost symmetrical distribution along the X-axis of the analysis region. Along the Y-axis, the distribution is discontinuous due to the location of the stone box in the hopper. For discharging, the optimal gate operating parameter is a 37.5-degree opening angle. Under this condition, the discharge duration for various HBI concentration ratios are close to ideal total discharge time, allowing for smooth coordination with the lower rotating chute distribution operation.
As the HBI concentration ratio increases, the discharge flow behavior becomes relatively unstable. However, the total mass flow rate remains within a fixed range of oscillation, and no arching of HBI occurs during the discharge process. Therefore, the layer charging method for adding HBI and a 37.5-degree gate opening angle are identified as suitable operating parameters. Under these conditions, even with an HBI addition concentration as high as 150 kg/THM, the blast furnace can operate smoothly.
關鍵字(中) ★ 煉鐵高爐
★ 爐頂料倉
★ 熱壓鐵塊(HBI)
★ 離散元素法
★ 粒徑偏析
★ 架橋現象
關鍵字(英) ★ Blast Furnace
★ Hopper
★ Hot Briquetted Iron (HBI)
★ Discrete Element Method
★ Particle Size Segregation
★ Arching Phenomenon
論文目次 摘要 i
Abstract ii
目錄 iv
附圖目錄 vi
附表目錄 ix
符號目錄 x
1 第一章 緒論 1
1.1研究背景 1
1.2文獻回顧 3
1.2.1爐料顆粒的參數量測與設定 3
1.2.2高爐爐頂料倉的模擬與驗證 5
1.2.3高爐爐上部佈料行為分析 6
1.2.4高爐中添加HBI之相關研究 8
1.3研究內容及目的 9
2 第二章 研究方法與原理 13
2.1離散元素法 13
2.1.1離散元素法原理 13
2.1.2顆粒形狀設定 13
2.1.3接觸力模型與牛頓運動方程式 14
2.1.4時間步長 15
2.2顆粒性質量測與模擬參數設定 15
2.2.1顆粒基本性質量測 16
2.2.2滾動摩擦係數之模擬校正 18
2.3縮小尺寸冷模實驗 19
2.3.1縮小尺寸爐頂料倉實驗設備 19
2.3.2冷模實驗流程說明 20
2.4高爐含鐵爐料料倉(右料倉)模擬設定 20
2.4.1高爐爐頂料倉模型 20
2.4.2未添加HBI之料倉填卸料模擬設定 21
2.4.3不同HBI添加濃度配比之料倉填卸料模擬設定 23
2.4.4未使用疊料混合填入HBI之料倉填卸料模擬設定 24
3 第三章 結果與討論 36
3.1縮小尺寸冷模實驗結果 36
3.1.1顆粒性質量測結果 36
3.1.2縮小尺寸冷模實驗結果與模擬驗證 37
3.2含鐵爐料料倉填卸料行為 38
3.2.1未添加HBI之料倉模擬結果 38
3.2.2不同HBI添加濃度配比之模擬結果 39
3.2.3有無添加HBI於料倉填卸料之影響 43
3.2.4未使用疊料混合填入HBI之料倉模擬結果 45
3.2.5 有無使用疊料混合填入對料倉填卸料之影響 47
4 第四章 結論 77
參考資料 79
參考文獻 [1] 鋼鐵業碳排占比。取自https://www.go-moea.tw/carbonReduceZeroPath/manufacture。
[2] Barrios, G.K., et al.," Contact parameter estimation for DEM simulation of iron ore pellet handling". Powder Technology, 2013, Vol. 248, pp. 84-93.
[3] Hlosta, J., et al.," DEM investigation of the influence of particulate properties and operating conditions on the mixing process in rotary drums: Part 1—Determination of the DEM parameters and calibration process". Processes, 2020, Vol. 8(2), pp. 222.
[4] Wei, H., et al.," Measurement and simulation validation of DEM parameters of pellet, sinter and coke particles". Powder Technology, 2020, Vol. 364, pp. 593-603.
[5] Akashi, M., et al.," Estimation of Bulk Density Distribution in Particle Charging Process Using Discrete Element Method Considering Particle Shape". ISIJ International, 2008, Vol. 48(11), pp. 1500-1506.
[6] Wu, S., et al.," DEM simulation of particle size segregation behavior during charging into and discharging from a Paul-Wurth type hopper". Chemical Engineering Science, 2013, Vol. 99, pp. 314-323.
[7] Xu, W., et al.," Effect of the Main Feeding Belt Position on Burden Distribution during the Charging Process of Bell-less Top Blast Furnace with Two Parallel Hoppers". ISIJ International, 2017, Vol. 57(7), pp. 1173-1180.
[8] Yu, Y. and Saxén, H.," Segregation behavior of particles in a top hopper of a blast furnace". Powder Technology, 2014, Vol. 262, pp. 233-241.
[9] Murao, A., et al.," Development of control techniques for mixing small coke at bell-less top blast furnace". ISIJ International, 2015, Vol. 55(6), pp. 1172-1180.
[10] Chakrabarty, A., et al.," Effect of Selective Pellet Loading on Burden Distribution and Blast Furnace Operations". ISIJ International, 2023, Vol. 63(2), pp. 271-281.
[11] Xu, Y., et al.," Quantitative comparison of binary particle mass and size segregation between serial and parallel type hoppers of blast furnace bell-less top charging system". Powder technology, 2018, Vol. 328, pp. 245-255.
[12] Xu, W., et al.," Investigation on the uneven distribution of different types of ores in the hopper and stock surface during the charging process of blast furnace based on discrete element method". Metallurgical Research & Technology, 2019, Vol. 116(3), pp. 314.
[13] Xu, W., et al.," The DEM study of segregation phenomena of burden distribution during the charging process of blast furnace with two parallel hoppers". Ironmaking & Steelmaking, 2018.
[14] Di Cecca, C., et al.," Use of DRI/HBI in ironmaking and steelmaking Furnaces". La Metallurgia Italiana, 2016, Vol. 108(4), pp. 33-38.
[15] Paknahad, P., et al.," Cold-Briquetted Iron and Carbon (CBIC), investigation of steelmaking behavior". Journal of Materials Research and Technology, 2020, Vol. 9(3), pp. 6655-6664.
[16] Wu, W., et al.," Development of simple blast furnace models for addressing carbon reduction strategies". Energy Conversion and Management, 2024, Vol. 302, pp. 118138.
[17] Xu, W., et al.," Investigation on the uneven distribution of different types of ores in the hopper and stock surface during the charging process of blast furnace based on discrete element method". Metallurgical Research & Technology, 2019, Vol. 116, pp. 314.
[18] 高爐結構示意圖。取自https://www.ithome.com.tw/news/142938。
[19] Cundall, P.A. and Strack, O.D.," A discrete numerical model for granular assemblies". geotechnique, 1979, Vol. 29(1), pp. 47-65.
[20] Li, T., et al.," Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles". Materials (Basel), 2017, Vol. 10(5).
[21] Hlosta, J., et al.," DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1—Determination of the DEM Parameters and Calibration Process". Processes, 2020, Vol. 8, pp. 222.
[22] Jung, H. and Yoon, W.B.," Determination and validation of discrete element model parameters of soybeans with various moisture content for the discharge simulation from a cylindrical model silo". Processes, 2022, Vol. 10(12), pp. 2622.
[23] Yan, D., et al.," Measurement and calibration of DEM parameters of soybean seed particles". Agriculture, 2022, Vol. 12(11), pp. 1825.
[24] 陳冠霖,以離散元素法分析高爐爐頂料倉爐料運動行為,碩士論文,2023,國立中央大學機械工程學系,桃園。
指導教授 蕭述三(Hsiau, Shu-San) 審核日期 2024-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明