博碩士論文 111323084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.17.157.165
姓名 劉鈺文(Yu-Wen Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高速顆粒流衝擊阻礙物下流場行為與應力變化之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著全球氣候變遷及人類活動日益增加,自然災害的頻率與強度亦隨之上升,其中山崩、土石流、雪崩及地震引發的坡地災害尤為顯著。這些災害不僅對人類社會安全構成威脅,也對生態系統與地形的長期變遷造成深遠影響。因此,本研究透過實驗的形式,來觀察顆粒崩塌的流動行為。
本研究旨在探討高速顆粒流衝擊阻礙物時的流場行為與應力變化。透過封閉式傾斜滑槽做為實驗設備,以實驗的方式研究了不同顆粒材質(玻璃砂和石英砂)以及不同阻礙物材質(PVC、EPE和LDPE),在不同傾斜角度下對顆粒流動行為和衝擊力的影響。為了觀察顆粒在流場的速度變化,使用粒子影像測速(Particle image velocimetry,PIV)計算流場速度,而應力變化則是使用壓力感測器進行量測。在實驗中,調整了滑槽傾斜角度,並記錄了每組實驗中的流場行為和應力分布。
實驗結果表明,顆粒材質對顆粒流的動態行為有顯著影響,主要表現為垂直噴射模式與堆積模式。隨著傾斜角度的增加,流場的最大速度與衝擊速度均提高,但會隨著流動長度遞減,其中衝擊速度普遍低於最大速度。對於玻璃砂而言,震波速度在小傾斜角下隨流動長度減少而降低;在大傾斜角下,震波速度則呈現先急遽減少後平緩的趨勢。對於石英砂,在較低傾斜角下,震波速度保持在固定範圍內,這是由於其安息角大於傾斜角造成的特殊流動現象。在衝擊力方面,衝擊力隨著傾斜角度增加而增加,且改變阻礙物材質能有效降低衝擊力,並觀察到衝擊力分布非線性變化,可分為五種不同類型。此外,使用理論模型去預測最大爬坡高度與最大總衝擊力,並以實驗數據對比,發現在密度比為1時,能有效預測最大爬坡高度,而在顆粒為玻璃砂時,理論預測最大總衝擊力誤差一般在±10%內。最後,為了量化差異,計算了沉積角,並且發現沉積角隨著傾斜角度增加而增加,所對應的福祿數也相應增加。
摘要(英) As global climate change intensifies and human activities increase, the frequency and severity of natural disasters have risen accordingly, with landslides, debris flows, avalanches, and earthquake-induced slope failures being particularly significant. These events pose direct threats to human safety and have profound effects on ecosystems and long-term geomorphological transformations. Consequently, this study focuses on observing the flow behavior of granular collapses through experimental methods.
This research aims to explore the behavior of high-speed granular flows impacting obstacles. Experiments were conducted using a closed inclined chute to investigate the effects of different granular materials (glass sand and quartz sand) and various barrier materials (PVC, EPE, and LDPE) at different inclination angles on the flow behavior and impact forces of the granular streams. Particle Image Velocimetry (PIV) was utilized to measure the velocity changes in the flow field, and load cell were employed to assess stress variations. Throughout the experiments, the inclination of the chute was adjusted, and detailed records of the flow behavior and stress distribution for each set of experiments were maintained.
The experimental results indicate that the material properties of the granules significantly influence the dynamics of the granular flow, primarily manifesting as vertical jetting or accumulation modes. As the inclination angle increases, both the maximum flow velocity and the impact velocity also increase, yet they decrease along with the flow length, with the impact velocity generally being lower than the maximum velocity. For glass sand, the shock wave velocity decreases with the flow length at smaller inclination angles; at larger inclination angles, the shock wave velocity initially decreases sharply and then stabilizes. For quartz sand, at lower inclination angles, the shock wave velocity remains within a fixed range due to its angle of repose being greater than the inclination angle, resulting in unique flow behavior. Regarding the impact forces, they increase with the inclination angle, and altering the material of the obstacle can effectively reduce these forces, with the distribution of impact forces showing nonlinear variations, categorized into five distinct types. Additionally, theoretical models were employed to predict the maximum run-up height and the overall impact force, with comparisons to experimental data revealing that when the density ratio is 1, the predictions accurately reflect the maximum run-up height. For glass sand, the predicted maximum total impact force generally has an error margin within ±10%. Finally, to quantify the differences, the deposition angle was calculated and found to increase with the inclination angle, with the corresponding Froude number also increasing accordingly.
關鍵字(中) ★ 顆粒流
★ 阻礙物
★ 震波
★ 衝擊力
★ 爬坡高度
關鍵字(英) ★ Granular flow
★ Barrier
★ Shock wave
★ Impact force
★ Run-up height
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 x
符號說明 xi
第一章 簡介 1
1.1前言 1
1.2 顆粒崩塌流介紹 2
1.3阻礙物對顆粒崩塌流的影響 3
1.3.1 阻礙物的類型 6
1.4 顆粒流對阻礙物的衝擊現象與衝擊力探討 7
1.5 研究動機 10
第二章 實驗方法與原理 14
2.1實驗設備與材質 14
2.1.1封閉式重力驅動滑槽與阻礙物 14
2.1.2阻礙物的材質 14
2.1.3顆粒材質 15
2.1.4應力量測系統 16
2.1.5影像拍攝與補光系統 17
2.2實驗方法 17
2.3原理與分析方法 18
2.3.1影像分析 18
2.3.2流場速度分析 20
第三章 實驗結果與討論 42
3.1 顆粒流動過程變化 42
3.1.1顆粒床層的輪廓 43
3.2 流場速度 44
3.2.1最大速度與流動長度之變化 45
3.2.2 衝擊速度與流動長度之變化 46
3.2.3 震波速度與流動長度之變化 46
3.3 阻礙物的衝擊力分析 47
3.3.1 不同顆粒材質對不同阻礙物材質衝擊力隨時間之變化 47
3.3.2 不同顆粒材質對不同阻礙物材質總衝擊力隨時間之變化 48
3.3.3 不同顆粒材質對不同阻礙物材質之衝擊力分布 48
3.3.4 實驗與理論預測衝擊力之比較 50
3.4 預測最大爬坡高度原理與實驗比較 51
3.5 沉積角與福祿數之關係 52
第四章 結論 96
參考文獻 99
參考文獻 [1] D. Takagi, J. N. McElwaine, and H. E. Huppert, "Shallow granular flows". Physical Review E, Vol. 83(3): pp. 031306, 2011.
[2] G. Lube, H. E. Huppert, R. S. J. Sparks, and A. Freundt, "Granular column collapses down rough, inclined channels". Journal of Fluid Mechanics, Vol. 675: pp. 347-368, 2011.
[3] K. van der Vaart, A. Thornton, C. Johnson, T. Weinhart, L. Jing, P. Gajjar, J. Gray, and C. Ancey, "Breaking size-segregation waves and mobility feedback in dense granular avalanches". Granular Matter, Vol. 20: pp. 1-18, 2018.
[4] Y.-h. Sun, W.-t. Zhang, X.-l. Wang, and Q.-q. Liu, "Numerical study on immersed granular collapse in viscous regime by particle-scale simulation". Physics of Fluids, Vol. 32(7), 2020.
[5] R. Maiti, G. Das, and P. K. Das, "Self organization of granular flow by basal friction variation: Natural jump, moving bore, and flying avalanche". AIChE Journal, Vol. 69(1): pp. e17943, 2023.
[6] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo, and D. Maza, "Silo clogging reduction by the presence of an obstacle". Physical Review Letters, Vol. 107(27): pp. 278001, 2011.
[7] K. Endo, K. A. Reddy, and H. Katsuragi, "Obstacle-shape effect in a two-dimensional granular silo flow field". Physical Review Fluids, Vol. 2(9): pp. 094302, 2017.
[8] A. B. Harada, E. Thackray, and K. N. Nordstrom, "Silo flow and clogging in the presence of an obstacle". Physical Review Fluids, Vol. 7(5): pp. 054301, 2022.
[9] R. Caitano, A. Garcimartín, and I. Zuriguel, "Anchoring effect of an obstacle in the silo unclogging process". Physical review letters, Vol. 131(9): pp. 098201, 2023.
[10] D. Mancarella and O. Hungr, "Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers". Canadian Geotechnical Journal, Vol. 47(8): pp. 827-841, 2010.
[11] A. Leonardi, G. Goodwin, and M. Pirulli, "The force exerted by granular flows on slit dams". Acta Geotechnica, Vol. 14: pp. 1949-1963, 2019.
[12] Y. Fan, F. Zhang, Y. Liu, and D. Ma, "Numerical Investigation of Impact Characteristics of Rigid Retaining Wall for Blocking Landslides: A Case Study of the Shum Wan Road Landslide". Geofluids, Vol. 2022, 2022.
[13] B.-J. Kim, D. Kim, and C.-Y. Yune, "Experimental Study on the Impact Dynamics of Cylindrical Baffles with a Rigid Barrier against Debris Flows". Applied Sciences, Vol. 12(17): pp. 8632, 2022.
[14] C. W. W. Ng, C. E. Choi, R. Koo, S. R. Goodwin, D. Song, and J. S. Kwan, "Dry granular flow interaction with dual-barrier systems". Géotechnique, Vol. 68(5): pp. 386-399, 2018.
[15] C. W. Ng, U. Majeed, and C. E. Choi, "Effects of solid fraction of saturated granular flows on overflow and landing mechanisms of rigid barriers". Géotechnique, Vol. 74(1): pp. 27-41, 2022.
[16] C. Choi, C. W. W. Ng, S. R. Goodwin, L. Liu, and W. Cheung, "Flume investigation of the influence of rigid barrier deflector angle on dry granular overflow mechanisms". Canadian Geotechnical Journal, Vol. 53(10): pp. 1751-1759, 2016.
[17] C. W. W. Ng, C. E. Choi, G. Goodwin, and W. Cheung, "Interaction between dry granular flow and deflectors". Landslides, Vol. 14: pp. 1375-1387, 2017.
[18] Y. Huang, B. Zhang, and C. Zhu, "Computational assessment of baffle performance against rapid granular flows". Landslides, Vol. 18: pp. 485-501, 2021.
[19] H. Luo and L. Zhang, "Earth pressure buildup in impacting earth flow behind a barrier". International Journal of Geomechanics, Vol. 20(2): pp. 04019170, 2020.
[20] Y.-J. Jiang, Z.-Z. Wang, Y. Song, and S.-Y. Xiao, "Cushion layer effect on the impact of a dry granular flow against a curved rock shed". Rock Mechanics and Rock Engineering, Vol. 51: pp. 2191-2205, 2018.
[21] B. Zhang and Y. Huang, "Unsteady overflow behavior of polydisperse granular flows against closed type barrier". Engineering Geology, Vol. 280: pp. 105959, 2021.
[22] S. B. Savage, "Gravity flow of cohesionless granular materials in chutes and channels". Journal of Fluid Mechanics, Vol. 92(1): pp. 53-96, 1979.
[23] J. Gray, Y.-C. Tai, and S. Noelle, "Shock waves, dead zones and particle-free regions in rapid granular free-surface flows". Journal of Fluid Mechanics, Vol. 491: pp. 161-181, 2003.
[24] J. Gray and K. Hutter, "Pattern formation in granular avalanches". Continuum Mechanics and Thermodynamics, Vol. 9: pp. 341-345, 1997.
[25] Y.-C. Tai, S. Noelle, J. Gray, and K. Hutter, "Shock-capturing and front-tracking methods for granular avalanches". Journal of Computational Physics, Vol. 175(1): pp. 269-301, 2002.
[26] A. Edwards and N. M. Vriend, "Size segregation in a granular bore". Physical Review Fluids, Vol. 1(6): pp. 064201, 2016.
[27] X. Cui, "Strong oblique shock waves in granular free-surface flows". Physics of Fluids, Vol. 33(8), 2021.
[28] A. Khan, S. Verma, P. Hankare, R. Kumar, and S. Kumar, "Shock–shock interactions in granular flows". Journal of Fluid Mechanics, Vol. 884: pp. R4, 2020.
[29] C. Liu, Z. Yu, and S. Zhao, "Consideration of maximum impact force design for a rock shed against dry granular flow". European Journal of Environmental and Civil Engineering, Vol. 26(7): pp. 2963-2984, 2022.
[30] Y.-J. Jiang and I. Towhata, "Experimental study of dry granular flow and impact behavior against a rigid retaining wall". Rock Mechanics and Rock Engineering, Vol. 46: pp. 713-729, 2013.
[31] Y.-J. Jiang, Y. Zhao, I. Towhata, and D.-X. Liu, "Influence of particle characteristics on impact event of dry granular flow". Powder Technology, Vol. 270: pp. 53-67, 2015.
[32] C. W. W. Ng, C. Choi, L. Liu, Y. Wang, D. Song, and N. Yang, "Influence of particle size on the mechanism of dry granular run-up on a rigid barrier". Géotechnique Letters, Vol. 7(1): pp. 79-89, 2017.
[33] A. Ahmadipur and T. Qiu, "Impact force to a rigid obstruction from a granular mass sliding down a smooth incline". Acta Geotechnica, Vol. 13: pp. 1433-1450, 2018.
[34] W. Shen, T. Zhao, J. Zhao, F. Dai, and G. G. Zhou, "Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses". Engineering Geology, Vol. 241: pp. 86-96, 2018.
[35] Y. Huang, X. Jin, and J. Ji, "Effects of barrier stiffness on debris flow dynamic impact—I: Laboratory flume test". Water, Vol. 14(2): pp. 177, 2022.
[36] B. Zanuttigh and A. Lamberti, "Experimental analysis of the impact of dry avalanches on structures and implication for debris flows". Journal of Hydraulic research, Vol. 44(4): pp. 522-534, 2006.
[37] C. Niu, H. Shen, Z. Lin, and J. Fu. "Real-Time Map Compression Method Based on Boolean Operation and Moore-Neighborhood Search". in International Conference on Intelligent Robotics and Applications. 2023. Springer.
[38] H. Nobach and C. Tropea, "Improvements to PIV image analysis by recognizing the velocity gradients". Experiments in fluids, Vol. 39: pp. 614-622, 2005.
[39] A. Armanini, M. Larcher, and M. Odorizzi, "Dynamic impact of a debris flow front against avertical wall. Int Conf Debris-Flow Hazards Mitig Mech Predict Assessment, Proc 1041–1049". 2011.
[40] Y. Jiang and Y. Zhao, "Experimental investigation of dry granular flow impact via both normal and tangential force measurements". Géotechnique Letters, Vol. 5(1): pp. 33-38, 2015.
[41] S. P. Pudasaini and C. Kröner, "Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results". Physical Review E, Vol. 78(4): pp. 041308, 2008.
[42] R. L. Handy, "The arch in soil arching". Journal of Geotechnical Engineering, Vol. 111(3): pp. 302-318, 1985.
[43] H. Hu, G. G. Zhou, D. Song, K. F. E. Cui, Y. Huang, C. E. Choi, and H. Chen, "Effect of slit size on the impact load against debris-flow mitigation dams". Engineering Geology, Vol. 274: pp. 105764, 2020.
[44] A. Ahmadipur, T. Qiu, and B. Sheikh, "Investigation of basal friction effects on impact force from a granular sliding mass to a rigid obstruction". Landslides, Vol. 16: pp. 1089-1105, 2019.
[45] A. Armanini, G. Rossi, and M. Larcher, "Dynamic impact of a water and sediments surge against a rigid wall". Journal of Hydraulic Research, Vol., 2019.
[46] T. Jóhannesson, P. Gauer, P. Issler, K. Lied, and K. Hákonardóttir, "The design of avalanche protection dams: recent practical and theoretical developments". Mitigative Measures against, Vol.: pp. 200, 2009.
[47] J. Fang, Y. Cui, H. Liu, L. Zhang, G. G. Zhou, and H. Fan, "Influences of deposition upslope the barrier on the dynamic impact of dry granular flow". Engineering Geology, Vol. 323: pp. 107212, 2023.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2024-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明