參考文獻 |
1. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-73.
2. Manz, A., N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990. 1(1): p. 244-248.
3. Juang, Y.J. and Y.J. Chiu, Fabrication of Polymer Microfluidics: An Overview. Polymers (Basel), 2022. 14(10).
4. Akceoglu, G.A., Y. Saylan, and F. Inci, A Snapshot of Microfluidics in Point‐of‐Care Diagnostics: Multifaceted Integrity with Materials and Sensors. Advanced Materials Technologies, 2021. 6(7).
5. Fallahi, H., et al., Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines (Basel), 2019. 10(12).
6. Cardoso, B.D., et al., Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater, 2023. 12(18): p. e2202936.
7. Liu, Y., et al., Recent progress in microfluidic biosensors with different driving forces. TrAC Trends in Analytical Chemistry, 2023. 158: p. 116894.
8. Giri, K. and C.W. Tsao, Recent Advances in Thermoplastic Microfluidic Bonding. Micromachines (Basel), 2022. 13(3).
9. Zohar, B., et al., A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. Acta Biomater, 2023. 163: p. 182-193.
10. Lopes, R., et al. Low cost microfluidic device for partial cell separation: Micromilling approach. in 2015 IEEE International Conference on Industrial Technology (ICIT). 2015.
11. Suriano, R., et al., Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Applied Surface Science, 2011. 257(14): p. 6243-6250.
12. Kim, P., et al., Soft lithography for microfluidics: a review. BIOCHIP JOURNAL, 2008. 2(1): p. 1-11.
13. Kang, K., et al., Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. Biomicrofluidics, 2018. 12(1): p. 014105.
14. Jung, W.C., et al., Micro machining of injection Mold inserts for fluidic channel of polymeric biochips. SENSORS, 2007. 7(8): p. 1643-1654.
15. Studer, V., A. Pépin, and Y. Chen, Nanoembossing of thermoplastic polymers for microfluidic applications. Applied Physics Letters, 2002. 80(19): p. 3614-3616.
16. Heckele, M. and W.K. Schomburg, Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering, 2004. 14(3): p. R1-R14.
17. Kim, K., et al., Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology. Microsystem Technologies, 2002. 9(1-2): p. 5-10.
18. Bissacco, G., H.N. Hansen, and L. De Chiffre, Micromilling of hardened tool steel for mould making applications. Journal of Materials Processing Technology, 2005. 167(2-3): p. 201-207.
19. Shiu, P.-P., G.K. Knopf, and M. Ostojic, Fabrication of metallic micromolds by laser and electro-discharge micromachining. Microsystem Technologies, 2009. 16(3): p. 477-485.
20. Su, R., F. Wang, and M.C. McAlpine, 3D printed microfluidics: advances in strategies, integration, and applications. Lab Chip, 2023. 23(5): p. 1279-1299.
21. Zhang, N., et al., 3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices. Micromachines (Basel), 2019. 10(9).
22. Sommer, D., et al., Design Rules for Hybrid Additive Manufacturing Combining Selective Laser Melting and Micromilling. Materials (Basel), 2021. 14(19).
23. Farahani, R.D., M. Dube, and D. Therriault, Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Adv Mater, 2016. 28(28): p. 5794-821.
24. Parthiban, P., et al., Evaluation of 3D-printed molds for fabrication of non-planar microchannels. Biomicrofluidics, 2021. 15(2): p. 024111.
25. Duda, T. and L.V. Raghavan, 3D Metal Printing Technology. IFAC-PapersOnLine, 2016. 49(29): p. 103-110.
26. Vollertsen, F., et al., Chances and Limitations in the Application of Laser Chemical Machining for the Manufacture of Micro Forming Dies. MATEC Web of Conferences, 2018. 190.
27. Allen, M.C., S. Lookmire, and E. Avci, Manufacturing Microfluidic Chips: Micro Milling Approach, in 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). 2022. p. 1-6.
28. Madureira, M., et al., Red Blood Cells Separation in a Curved T-Shaped Microchannel Fabricated by a Micromilling Technique, in VipIMAGE 2019. 2019. p. 585-593.
29. Chen, P.C., et al., Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method. Micromachines (Basel), 2017. 8(9).
30. Arcot, Y., G.L. Samuel, and L.X. Kong, Manufacturability and surface characterisation of polymeric microfluidic devices for biomedical applications. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022. 121(5-6): p. 3093-3110.
31. Ku, X., et al., Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique. Microfluidics and Nanofluidics, 2018. 22(8).
32. Wang, J., et al., A novel method of manufacturing a microchannel with integrating three-dimensional microstructure arrays for mixing experiment. AIP Advances, 2021. 11(9).
33. Moxley-Paquette, V., et al., 5-Axis CNC Micromilling for Rapid, Cheap, and Background-Free NMR Microcoils. Anal Chem, 2020. 92(23): p. 15454-15462.
34. Böhme, A., et al., Fabrication and Validation by Micromilling for Bioreactor Prototyping. Materials Science Forum, 2018. 941: p. 2448-2453.
35. Yu, J.Z., et al., Biomimetic scaffolds with three-dimensional undulated microtopographies. Biomaterials, 2017. 128: p. 109-120.
36. Hernández-Ortiz, J.A., et al., Computer Numerical Control Micromilling of a Microfluidic Acrylic Device with a Staggered Restriction for Magnetic Nanoparticle-based Immunoassays. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022(184).
37. Sanz, O., et al., Intensification of hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy, 2016. 41(10): p. 5250-5259.
38. Milan, N., et al., Innovative fabrication of diffractive surfaces on plastic parts via textures micromilled on NiP injection moulds. The International Journal of Advanced Manufacturing Technology, 2021. 113(5-6): p. 1347-1359.
39. Masato, D., et al., Impact of deep cores surface topography generated by micro milling on the demolding force in micro injection molding. Journal of Materials Processing Technology, 2017. 246: p. 211-223.
40. Deng, D., L. Zeng, and W. Sun, A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. International Journal of Heat and Mass Transfer, 2021. 175.
41. Li, K.-M. and S.-Y. Chou, Effect of Minimum Quantity Lubrication on Tool Wear and Surface Roughness in Micro-Milling. 2009. p. 393-399.
42. O′Toole, L., C.W. Kang, and F.Z. Fang, Precision micro-milling process: state of the art. Adv Manuf, 2021. 9(2): p. 173-205.
43. Koklu, U. and G. Basmaci, Evaluation of Tool Path Strategy and Cooling Condition Effects on the Cutting Force and Surface Quality in Micromilling Operations. Metals, 2017. 7(10).
44. Geng, Y.Q., et al., Effect of the inclined angle of micromilling tool on the fabrication of the microfluidic channel. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023. 125(7-8): p. 3069-3079.
45. Tamez-Tamez, J.I., et al., Assessment of geometrical dimensions and puncture feasibility of microneedles manufactured by micromilling. The International Journal of Advanced Manufacturing Technology, 2023. 126(11-12): p. 4983-4996.
46. Filiz, S., et al., Micromilling of microbarbs for medical implants. International Journal of Machine Tools and Manufacture, 2008. 48(3-4): p. 459-472.
47. Xiang, S., et al., Multi-machine tools volumetric error generalized modeling and Ethernet-based compensation technique. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015. 230(5): p. 870-882.
48. Suh, S.H., J.J. Lee, and S.K. Kim, Multiaxis machining with additional-axis NC system: Theory and development. The International Journal of Advanced Manufacturing Technology, 1998. 14(12): p. 865-875.
49. Bohez, E.L.J., Five-axis milling machine tool kinematic chain design and analysis. International Journal of Machine Tools and Manufacture, 2002. 42(4): p. 505-520.
50. Bang, Y.-b., K.-m. Lee, and S. Oh, 5-axis micro milling machine for machining micro parts. The International Journal of Advanced Manufacturing Technology, 2004. 25(9-10): p. 888-894.
51. Takeuchi, Y., H. Yonekura, and K. Sawada, Creation of 3-D tiny statue by 5-axis control ultraprecision machining. Computer-Aided Design, 2003. 35(4): p. 403-409.
52. Nakamoto, K., et al., Fabrication of microinducer by 5-axis control ultraprecision micromilling. CIRP Annals, 2011. 60(1): p. 407-410.
53. Modarelli, M., D. Kot-Thompson, and K. Hoshino, 5-axis CNC micro-milling machine for three-dimensional microfluidics. bioRxiv, 2024: p. 2024-06.
54. Chang, F.-Y., et al., Fabrication of Edge Rounded Polylactic Acid Biomedical Stents by the Multi-Axis Micro-Milling Process. Applied Sciences, 2020. 10(8).
55. LTD., S.H.I.C. Five-axis machining center. Available from: https://www.hartford.com.tw/tw.
56. Moges, T.M., K.A. Desai, and P.V.M. Rao, Modeling of cutting force, tool deflection, and surface error in micro-milling operation. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018. 98(9-12): p. 2865-2881.
57. Chen, N., et al., Advances in micro milling: From tool fabrication to process outcomes. International Journal of Machine Tools and Manufacture, 2021. 160.
58. Alhadeff, L.L., et al., Protocol for tool wear measurement in micro-milling. Wear, 2019. 420-421: p. 54-67.
59. Präzisionswerkzeuge., A.G.; Available from: https://www.albrecht-germany.com/aktuell/.
60. Conditions, S.T.G.T.a.; Available from: https://www.secotools.com/article/84590?q=BT40TFADB-HCS06-150.
61. ANN WAY MACHINE TOOLS CO., L.; Available from: https://www.annwaytools.com/webls-zh-tw/ADS-High-Speed-Collet-Chuck-63.html.
62. Ltd., D.P.T.C.; Available from: https://www.endmill.com.tw/.
63. Company, M.-C.S.; Available from: https://www.mcmaster.com/products/end-mills/end-mills-1~/carbide-square-end-mills-9/system-of-measurement~metric/.
64. Conditions, S.T.G.T.a. Catalog Solid End Mills. Available from: https://www.secotools.com/article/84584?q=JME542002G1S.0Z2-SIRA&language=zh.
65. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip, 2015. 15(11): p. 2364-78.
66. Kadam, S.P. and S. Mitra, Electrochemical deburring - A comprehensive review. Materials Today: Proceedings, 2021. 46: p. 141-148.
67. Kumar, A.S., S. Deb, and S. Paul, Ultrasonic-assisted abrasive micro-deburring of micromachined metallic alloys. Journal of Manufacturing Processes, 2021. 66: p. 595-607.
68. Balázs, B.Z., et al., A review on micro-milling: recent advances and future trends. The International Journal of Advanced Manufacturing Technology, 2020. 112(3-4): p. 655-684.
69. Saha, S., et al., An investigation on the top burr formation during Minimum Quantity Lubrication (MQL) assisted micromilling of copper. Materials Today: Proceedings, 2020. 26: p. 1809-1814.
70. 楊勝光, Research on the fabrication of metal microchannels and microstructures using micro-milling process. 2023. p. 28.
71. Nghiep, T.N., A.A.D. Sarhan, and H. Aoyama, Analysis of tool deflection errors in precision CNC end milling of aerospace Aluminum 6061-T6 alloy. Measurement, 2018. 125: p. 476-495.
72. Hashimoto, S., S. Uehara, and N. Moriizumi, Movement of Cell Flowing Over Oblique Microgroove. Journal of Systemics, Cybernetics and Informatics, 2023. 21(1): p. 73-79.
73. Rahim, S.A., et al. Design and development of oblique groove micromixer for laminar blood reagent mixing. in 2013 IEEE International Conference on Control System, Computing and Engineering. 2013.
74. Chen, L., et al., Flow Boiling of Low-Pressure Water in Microchannels of Large Aspect Ratio. Energies, 2020. 13(11).
75. Connon, C.J. and R.M. Gouveia, Milliscale Substrate Curvature Promotes Myoblast Self-Organization and Differentiation. Adv Biol (Weinh), 2021. 5(4): p. e2000280.
76. Werner, M., et al., Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation. Adv Sci (Weinh), 2017. 4(2): p. 1600347. |