以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:97 、訪客IP:3.22.248.152
姓名 李謙益(Chien-Yi Lee) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 新型內旋強力刮削螺桿之加工參數與材料移除率關聯性研究
(A Study on Correlation between Processing Parameters and Material Removal Rate of A Novel Internal-meshing Screw Skiving)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2029-8-30以後開放) 摘要(中) 強力刮齒刀(Power Skiving)是一種有極高效率的加工齒輪技術,常被用於進行內齒輪及外齒輪之加工,然而強力刮齒刀卻較少被使用於切削螺桿上,雖然其幾何與齒輪相似,並已有研究指出以強力刮齒切削螺桿具有可行性,然而切削時之切屑及切削力需有進一步的研究進行可行性的佐證。本研究著重於探討新型內旋強力刮齒刀在切削螺桿時之未變形切屑幾何及體積移除率,先以目標螺桿之齒條創生對應之強力刮齒刀,並建立以強力刮齒刀切削螺桿之相對座標系及數學模型,更進一步將加工過程分為單次及兩次徑向切削,將強力刮齒刀刀具面之切削路徑藉由等截面法轉成螺桿齒廓面之切削軌跡,並以此建立未變形切屑數學模型,將取得之切屑點進行四面體網格化,以此計算未變形切屑之體積,藉由探討各加工參數下之未變形切屑體積及其體積移除率(Material Removal Rate, MRR),獲得最佳切削效率之加工參數,而其中的未變形切屑體積將藉由SOLIDWORKS 3D設計軟體對其進行驗證。此外,本研究亦有利用上述未變形切屑之體積移除率,透過Kienzle方程並帶入實驗因子,建立切削力預測模型。結果證明在相同刀具及工件材質的前提下,本研究之預測切削力數值均小於現有文獻中實驗量測之切削力數值,進而證明此新型內旋強力刮齒技術具有較高的可行性。 摘要(英) Power Skiving is an extremely efficient technique for machining gears and is often used for internal and external gear machining. However, power skiving is rarely used for screw rotors, which similar to gears. A study has shown that it is feasible to cut screw rotors with power skiving, however, further research is needed to prove that the cutting chips and cutting forces are feasible. This study emphasis on investigating the geometry and volume removal rate of the undeformed chips of a new internal-cylindrical skiving cutter when cutting a screw. First of all, generate an internal-cylindrical skiving cutter corresponding to the rack of the target screw. Then, establish the coordinate system and mathematical model for cutting screw with the internal-cylindrical skiving cutter. The machining process was further divided into single and two radial cutting. In order to establish the mathematical model of the undeformed chip, the cutting path of the skiving cutter face is converted into the cutting trajectory of the screw tooth profile by the isotropic method. By exploring the volume and the volume removal rate of undeformed chips under each machining parameter, the machining parameter with the best efficiency is obtained. The volume of the undeformed chips will be verified by SOLIDWORKS 3D design software. In addition, a cutting force prediction model was developed by using the above volume removal rate of undeformed chips through Kienzle′s equation with experimental factors. The results proved that the predicted cutting forces in this study were smaller than those measured by experiments in the rest of the literature for the same tool and workpiece materials. This further proves that the high feasibility of this new internal-cylindrical skiving technology. 關鍵字(中) ★ 強力刮齒
★ 螺桿
★ 未變形切屑
★ 體積移除率
★ 切削力
★ Kienzle關鍵字(英) ★ power skiving
★ screw
★ chip
★ material removal rate
★ cutting force
★ Kienzle論文目次 摘要 i
ABSTRACT ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 ix
參數符號表 x
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究目的 6
1-4 論文架構 6
第2章 強力刮削螺桿之未變形切屑模型建立 7
2-1 前言 7
2-2 CNC 5軸內旋削強力刮齒機座標系統之建立 8
2-3 未變形切屑數學模型之建立 12
2-3-1 切削路徑 12
2-3-2 等截面法解兩切削刀序交點 14
2-3-3 求解未變形切屑點 16
2-4 切屑網格化 17
2-4-1 B-spline Function佈點 17
2-4-2 建立刀具切屑點四面體網格 19
2-4-3 建立坯體切屑點四面體網格 20
2-5 切屑體積及體積移除率之計算 21
2-6 切削力預測模型 22
2-7 切削速度模擬 24
2-8 小結 24
第3章 SOLIDWORKS切屑模型建立及驗證 25
3-1 前言 25
3-2 SOLIDWORKS模型建立 26
3-3 未變形切屑驗證 27
3-3-1 單次徑向切削 28
3-3-2 兩次徑向切削 29
3-4 小結 30
第4章 加工參數對未變形切屑之影響探討 31
4-1 單次徑向切削數值範例 32
4-1-1 不同切削進給速度對MRR影響之探討 35
4-1-2 不同強力刮齒刀刃數對MRR及切削力影響之探討 37
4-2 兩次徑向切削數值範例 39
4-2-1 不同切削進給速度對MRR影響之探討 42
4-2-2 不同強力刮齒刀刃數對MRR及切削力影響之探討 46
4-2-3 不同離隙角對MRR及切削力影響之探討 50
第5章 總結與未來展望 54
5-1 總結 54
5-2 未來展望 56
附錄 57
參考文獻 60
作者簡介 63參考文獻 [1] 機械新刊,“Power Skiving旋風車削當今最快的內齒輪加工工藝 德國Pittle把它做到更好”,2018。 取自https:/www.phdbooks.com.tw/cn/magazine/detail/700
[2] 科艾傳動,“齒輪六種加工工藝 ”,2022。 取自https://www.k2chain.com/process-technology/1072/
[3] GA technology, The Gleason Power Skiving Approach. 取自https://gatechnology.lv/product/the-gleason-power-skiving-approach/
[4] Pittler von, W., Method of Cutting Van Gears Using a Gear-like Cutting Tool with Cutting Edges On The Face Surfaces of the Teeth, Patent application, Germany, 1910.
[5] Kobialka, C., Contemporary gear pre-machining solutions, Gear Solutions, 11(4), 42-49, 2013.
[6] Chen, X. C., Li, J., and Lou, B. C., “A study on the design of error-free spur slice cutter,” Int. J. Adv. Manuf. Technol., 68(1-4), pp. 727-738, 2013.
[7] Luu, T. T., and Wu, Y. R., “A Novel Generating Machining Process for Screw-rotors Using an Internal-cylindrical Skiving Cutter on a New CNC Skiving Machine,” Mech. Mach. Theory, 184, 2023.
[8] Van, H. T., “Real-Time Shaded NC Milling Display,” Trancept Systems Inc., 20(4), pp. 15-20, 1986.
[9] Zhang, W., Peng, X., Leu, M. C., and Zhang, W., “A Novel Contour GenerationAlgorithm for SurfaceReconstruction From Dexel Data,” J. Comput. Inf. Sci. Eng., 7(3), pp. 203-210, 2007.
[10] Inui, M., Huang, Y., Onozuka, H., and Umezu, N., “Geometric Simulation of Power Skiving of Internal Gear Using Solid Model with Triple-Dexel Representation,” Procedia Manuf., 48, pp. 520-527. DOI:doi.org/10.1016 /j.promfg.2020.05.078, 2020.
[11] Merdol, S. D., and Altintas, Y., “Virtual Simulation and Optimization of Milling Applications—Part II: Optimization and Feedrate Scheduling,” J. Manuf. Sci. Eng., 130(5), pp. 0510051-05100510, 2008.
[12] Chen, S. H., Fong, Z. H., “Study on the cutting time of the hypoid gear tooth flank,” Mech. Mach. Theory., 84, pp. 113-124, 2015.
[13] Wang, Y. C., “Material Removal Rate of Face-Milled Bevel Gears Based on a Ring-Dexel Cutting Simulation,” National Taiwan University of Science and Technology, 2022.
[14] Kienzle, O., Kersting, P., Biermann, D. and Krebs, E., “The determination of forces and power on cutting tools and machine tools,” VDI-Z, 94(11), pp. 299-305, 1952.
[15] Spath, D., Hühsam A., “Skiving for high-performance machining of periodic structures,” CIRP Annals, 51(1), pp. 91-94, 2002.
[16] Guo, Z., Mao, S. M., Huyan, L., and Duan, D. S., “Research and improvement of the cutting performance of skiving tool,” Mech. Mach. Theory., 120, pp. 302-313, 2018.
[17] Vargas, B., Zapf, M., Klose, J., Zanger, F., and Schulze, V., “Numerical Modelling of Cutting Forces in Gear Skiving,” Procedia CIRP, 82, 455-460, 2019.
[18] McCloskey, P., Katz, A., Berglind, L., Erkorkmaz, K., Ozturk, E., and Ismail, F., “Chip geometry and cutting forces in gear power skiving,” CIRP Annals, 68(1), pp. 109-112, 2019.
[19] Onozuka, H., Tayama, F., Huang, Y., and Inui, M., “Cutting force model for power skiving of internal gear,” 56 Part B, pp.1277-1285, 2020.
[20] Guo, E., Chen, M., Liu, C., and Gu, X., “Analysis of uncut chip geometry and cutting force in gear skiving process using a cylindrical tool,” Int. J. Adv. Manuf. Technol., 132, pp. 5141-5152, 2024.
[21] Litvin, F. L., and Fuentes, A., Gear Geometry and Applied Theory, Cambridge University Press. 2nd Edition, 2004.
[22] Wu, Y. R., Fong, Z. H., “Rotor profile design for the twin-screw compressor based on the normal-rack generation method,” J. Mech. Design, 130(4), pp. 1-8, 2008.
[23] Piegl, L. and Tiller, W., The NURBS Book, Springer-Verlag, 1995.指導教授 吳育仁(Chien-Yi Lee) 審核日期 2024-8-8 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare