參考文獻 |
[1] S. Bairagi et al., "A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs", Int. J. Energy Res., 2020, 44(7), 5545-5563, https://doi.org/10.1002/er.5306
[2] Y. Pang, et al., "Multilayered Cylindrical Triboelectric Nanogenerator to Harvest Kinetic Energy of Tree Branches for Monitoring Environment Condition and Forest Fire," Adv. Funct. Mater., 2020, 30, 32, 2003528, https://doi.org/10.1002/adfm.202003598
[3] S. A. Han et al., "Point-Defect-Passivated MoS2 Nanosheet-Based High Performance Piezoelectric Nanogenerator," Adv. Funct. Mater., 2018, 30, 21, 1800342, https://doi.org/10.1002/adma.201800342
[4] S. R. Patil et al., "Triboelectric Nanogenerator Based on Biowaste Tribopositive Delonix Regia Flowers Powder," Energy Tech., 2022, 10(12), 2200876, https://doi.org/10.1002/ente.202200876
[5] S. Yan, Z. et al., "Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting," Int. J. Energy Res., 2021, 45(7), 11053-11064, https://doi.org/10.1002/er.6589
[6] L. Lu, et al.,"Flexible PVDF based piezoelectric nanogenerators." Nano Energy, 2020, 78, 105251, https://doi.org/10.1016/j.nanoen.2020.105251
[7] Y. K. Fuh et al., "A fully packaged self-powered sensor based on near-field electrospun arrays of poly(vinylidene fluoride) nano/micro fibers," EXPRESS Polym. Lett, 2018, 12(2), 136–145, https://doi.org/10.3144/expresspolymlett.2018.12
[8] M. H. Syu, Y. J. Guan, W. C. Lo, Y. K. Fuh. "Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method." Nano Energy, 2020, 76, 105029, https://doi.org/10.1016/j.nanoen.2020.105029
[9] Z. Xiaofang et al., "PVDF-based and its Copolymer-Based Piezoelectric Composites: Preparation Methods and Applications." J. Electron. Mater, 2022, 51, 5528–5549, https://doi.org/10.1007/s11664-022-09825-y
[10] S. Katzir, "The discovery of the piezoelectric effect," in The beginnings of piezoelectricity: Springer, 2006, 15-64.
[11] K. Uchino, "Advanced piezoelectric materials: Science and technology. Woodhead Publishing," 2017.
[12] M. Birkholz, "Crystal-field induced dipoles in heteropolar crystals II: Physical significance," Zeitschrift für Physik B Condensed Matter, 96(3), 333-340, 1995, https://doi.org/10.1007/BF01313055
[13] C. Covaci and A. Gontean, "Piezoelectric energy harvesting solutions: A review," Sensors, 2020, 20(12), 3512, https://doi.org/10.3390/s20123512
[14] X. Hu et al., "Increased effective piezoelectric response of structurally modulated P (VDF-TrFE) film devices for effective energy harvesters," Materials & Design, 2020, 192, 108700. https://doi.org/10.1016/j.matdes.2020.108700
[15] G. Zhu et al., "Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification," Nano letters, 2014, 14(6), 3208-3213, https://doi.org/10.1021/nl5005652
[16] N. Soin, S. Anand, and T. Shah, "Energy harvesting and storage textiles," in Handbook of Technical Textiles: Elsevier, 2016, 357-396. https://doi.org/10.1016/B978-1-78242-465-9.00012-4
[17] S. Ebnesajjad, "Introduction to fluoropolymers," in Applied Plastics Engineering Handbook: Elsevier, 2017, 55-71.
[18] D. W. Grainger, "Fluorinated Biomaterials," in Biomaterials Science: Elsevier, 2020, 125-138. https://doi.org/10.1016/j.jconrel.2021.09.001.
[19] Q. Zhang et al., "Poly (vinylidene fluoride)(PVDF) and its copolymers," Encyclopedia of smart materials, 2002.
[20] N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnol. Adv., 28(3), 325-347, 2010.
[21] G. I. Taylor, "Electrically driven jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969. 313(1515), 453-475.
[22] X.-X. He et al., "Near-Field Electrospinning: Progress and Applications," J. Phys. Chem. C., 2017, 121(16), 8663–8678, https://doi.org/10.1021/acs.jpcc.6b12783
[23] F.-R. Fan et al., "Flexible triboelectric generator," Nano energy, 2012. 1(2), 328-334, https://doi.org/10.1016/j.nanoen.2012.01.004
[24] R. Yang et al., "Power generation with laterally packaged piezoelectric fine wires," Nature nanotechnology, 2009. 4(1), 4-39, https://doi.org/10.1038/nnano.2008.314.
[25] Zhan, X., Si, C., Zhou, J., & Sun, Z.. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020, 5(2), 235-258. https://doi.org/10.1039/C9NH00571
[26] Lee, S. H., Eom, W., Shin, H., Ambade, R. B., Bang, J. H., Kim, H. W., & Han, T. H. Room-temperature, highly durable Ti3C2T x MXene/graphene hybrid fibers for NH3 gas sensing. ACS applied materials & interfaces, 2020, 12(9), 10434-10442. https://doi.org/10.1021/acsami.9b21765
[27] Li, W., Song, Z., Zhong, J., Qian, J., Tan, Z., Wu, X., ... & Ran, X.. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. Journal of Materials Chemistry C, 2019, 7(33), 10371-10378, DOI https://doi.org/10.1039/C9TC02715G
[28] Anasori, Babak, et al. "Two-dimensional, ordered, double transition metals carbides (MXenes)." ACS nano 9.10 (2015): 9507-9516, https://doi.org/10.1021/acsnano.5b03591
[29] Huang, H., Dong, D., Li, W., Zhang, X., Zhang, L., Chen, Y., ... & Lu, X. Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chinese Journal of Chemical Engineering, 2020, 28(7), 1981-1993. https://doi.org/10.1016/j.cjche.2020.04.014
[30] Xue, Y., Feng, J., Huo, S., Song, P., Yu, B., Liu, L., & Wang, H.. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chemical Engineering Journal, 2020, 397, 125336. https://doi.org/10.1016/j.cej.2020.125336
[31] Tan, K. H., Samylingam, L., Aslfattahi, N., Saidur, R., & Kadirgama, K.. Optical and conductivity studies of polyvinyl alcohol-MXene (PVA-MXene) nanocomposite thin films for electronic applications. Optics & Laser Technology, 2021, 136, 106772. https://doi.org/10.1016/j.optlastec.2020.106772
[32] Luo, X., Zhu, L., Wang, Y. C., Li, J., Nie, J., & Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Advanced Functional Materials, 2021, 31(38), 2104928. https://doi.org/10.1002/adfm.202104928
[33] Mao, M., Yu, K. X., Cao, C. F., Gong, L. X., Zhang, G. D., Zhao, L., ... & Tang, L. C.. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615. https://doi.org/10.1016/j.cej.2021.131615
[34] Bragaglia, Mario, et al. "3D printing of polybutadiene rubber cured by photo-induced thiol-ene chemistry: A proof of concept." Express Polymer Letters 14.6 (2020).
[35] A. Victor, J. Ribeiro, and F. F. Araújo, "Study of PDMS characterization and its applications in biomedicine: A review," Journal of Mechanical Engineering and Biomechanics, 2019. 4(1), 1-9, https://doi.org/10.24243/JMEB/4.1.163
[36] Jones, Alistair, et al. "Investigating mechanical properties of additively manufactured multimaterial gyroids: The effect of proportion, scale and shape." Additive Manufacturing 76 (2023): 103784, https://doi.org/10.1016/j.addma.2023.103784
[37] Yu, Shixiang, Jinxing Sun, and Jiaming Bai. "Investigation of functionally graded TPMS structures fabricated by additive manufacturing." Materials & Design 182 (2019): 108021, https://doi.org/10.1016/j.matdes.2019.108021
[38] Feng, Jiawei, et al. "Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications." International Journal of Extreme Manufacturing 4.2 (2022): 022001, https://doi.org/ 10.1088/2631-7990/ac5be6
[39] Maines, Erin M., et al. "Sustainable advances in SLA/DLP 3D printing materials and processes." Green Chemistry 23.18 (2021): 6863-6897, https://doi.org/ 10.1039/D1GC01489G
[40] Finnes, Tyler. "High definition 3d printing–comparing sla and fdm printing technologies." The Journal of Undergraduate Research 13.1 (2015): 3, http://openprairie.sdstate.edu/jur/vol13/iss1/3
[41] Mao, M., Yu, K. X., Cao, C. F., Gong, L. X., Zhang, G. D., Zhao, L., ... & Tang, L. C.. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615. https://doi.org/10.1016/j.cej.2021.131615
[42] Peng, Tianshu, et al. "Multifunctional MXene/aramid nanofiber composite films for efficient electromagnetic interference shielding and repeatable early fire detection." ACS omega 7.33 (2022): 29161-29170, https://doi.org/10.1021/acsomega.2c03219
[43] Zhang, Lei, et al. "Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor." Composites Part B: Engineering 223 (2021): 109149, https://doi.org/10.1016/j.compositesb.2021.109149
[44] Zhang, Zhao-Hui, et al. "Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response." Chemical Engineering Journal 386 (2020): 123894. https://doi.org/10.1016/j.cej.2019.123894
[45] Y. Bin et al., "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density." Nano Energy, 2018, 48, 464-470, https://doi.org/10.1016/j.nanoen.2018.03.064
[46] Liu, Yingchun, et al. "Highly thermal conductivity and flame retardant flexible graphene/MXene paper based on an optimized interface and nacre laminated structure." Composites Part A: Applied Science and Manufacturing 141 (2021): 106227. https://doi.org/10.1016/j.compositesa.2020.106227
[47] Si, Jing-Yu, et al. "Functionalization of MXene nanosheets for polystyrene towards high thermal stability and flame retardant properties." Polymers 11.6 (2019): 976. https://doi.org/10.3390/polym11060976
[48] Chen, Wenhua, et al. "A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor." Chemical Engineering Journal 353 (2018): 115-125. https://doi.org/10.1016/j.cej.2018.07.110
[49] J. Wang, C. C. Chen, C. Y. Shie , T. T. Li , Y. K. Fuh. "A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication." Sensors and Actuators A: Physical, 2022, 342, 113622, https://doi.org/10.1016/j.sna.2022.113622
[50] Mi. H. Xu, Ch. Y. Shie, Ch. Ch. Chen, Y. K. Kwan, W. Ch. Lo, H. F. Chen, Y. H. Lin, Yiin Kuen Fuh, "All directional nanogenerators (NGs) with a highly flexible and near field electrospun concentrically aligned nano/micro P(VDF-TrFE) fibers," Microsyst., 2022, 28, 2549–2560, https://doi.org/10.1007/s00542-022-05387-5
[51] T. H. Lee, C. Y. Chen, C. Y. Tsai,Y. K. Fuh, "Near-field electrospun piezoelectric fibers as sound-sensing elements." Polymers, 2018, 10(7), 692, https://doi.org/10.3390/polym10070692
[52] Y. K. Fuh, B. S. Wang. "Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition." Nano Energy, 2016, 30, 677-683, https://doi.org/10.1016/j.nanoen.2016.10.061
[53] B. Azimi et al.,"Electrospinning piezoelectric fibers for biocompatible devices," Adv. Healthc. Mater.., 2019, 1901287, https://doi.org/10.1002/adhm.201901287
[54] S. Niu et al., "Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage." T-ED, 2014, 62(2), 641 - 647, https://doi.org/10.1109/TED.2014.2377728
[55] Xie, Huali, et al. "A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities." Chemical Engineering Journal 369 (2019): 8-17, https://doi.org/10.1016/j.cej.2019.03.045
[56] Shi, Yongqian, et al. "Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety." Chemical Engineering Journal 399 (2020): 125829, https://doi.org/10.1016/j.cej.2020.125829
[57] Gong, Kaili, et al. "MXene as emerging nanofillers for high-performance polymer composites: A review." Composites Part B: Engineering 217 (2021): 108867, https://doi.org/10.1016/j.compositesb.2021.108867
[58] Huang, Yubin, et al. "Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating." Chemical Engineering Journal 391 (2020): 123621, https://doi.org/10.1016/j.cej.2019.123621 |