博碩士論文 111323117 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.133.126.46
姓名 郭仲維(Zhong-Wei Guo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於Ti3C2Tx MXene/PVP/壓電纖維多層嵌入積層製造的TPMS墊片之自供電火災報警系統
(Self-powered fire alarm system based on Ti3C2Tx MXene/PVP/ Piezoelectric fibers Multilayers embedded with additively manufactured TPMS spacers)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 本研究提出了一種創新概念,使用近場靜電紡絲(NFES)技術來創建一個自供電的循環火災警報傳感器(MPSFS)。這項技術結合了聚偏二氟乙烯-三氟乙烯(PVDF-TrFE)奈米纖維和柔性印刷電路板(FPCBs),並將其封裝在聚二甲基矽氧烷(PDMS)中,形成一個壓電奈米發電機(PENG)系統。這個系統隨後與Ti3C2Tx MXene/PVP薄膜整合,並添加了TPMS結構之墊片,以提高奈米發電機的輸出效率,創造一個火災警報傳感器。
我們展示了Ti3C2Tx MXene/PVP材料作為火災傳感器的潛力,因其柔韌性、優異的阻燃性和電阻變化特性。由於PVP分子和MXene片層之間的共價鍵,這種基於MXene的薄膜具有高阻燃性,使其適用於敏感且可重複使用的火災警報。通過熱氧化處理,MXene薄膜轉變為魚鱗狀的C/N混合二氧化鈦網絡,使其在持續火焰暴露下能快速激發電子,實現超快火災警報響應(約3.0秒)和循環火災警報功能。TPMS結構,作為奈米發電機和MXene/PVP薄膜之間的墊片,能輕鬆調整機械剛度以增強PENG性能。通過可控地調整參數生成不同厚度的TPMS結構,並透過壓縮測試找出作為MPSFS墊片的最佳設計,發現0.2 mm、0.3 mm和0.4 mm厚度中,0.2 mm厚度具有最低的彈性模量。這使得在壓縮奈米發電機以充電時能達到最大的變形度,並通過隨後的奈米發電機電壓輸出測試進一步驗證了這一發現。因此,它確保了MPSFS的充電性能。
總結而言,這項研究提出了一種創新方法,使用壓電奈米發電機(PENGs)、MXene/PVP薄膜和三重周期最小曲面(TPMS)結構墊片,創建了一個小型、自供電的火災警報系統,實現了高效的能量收集和火災監控。MXene/PVP薄膜在火災響應中提供了優異的阻燃性和可重複使用性,而TPMS結構的引入不僅增強了系統的機械強度,還由於其固有的彈性提高了奈米發電機的充電效率。這一創新系統顯著降低了火災風險,並展示了在推進消防技術方面的巨大潛力和應用前景。
摘要(英) This study proposes an innovative concept of using Near-Field Electrospinning (NFES) technology to create a self-powered cyclic fire alarm sensor (MPSFS). This technology combines polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofibers with flexible printed circuit boards (FPCBs), encapsulating them in polydimethylsiloxane (PDMS) to form a piezoelectric nanogenerator (PENG) system. This system is then integrated with Ti3C2Tx MXene/PVP and TPMS structure spacers are added to enhance the output efficiency of the nanogenerator, creating a fire alarm sensor.
We demonstrated the potential of Ti3C2Tx MXene/PVP materials as fire sensors due to their flexibility, excellent flame retardancy, and resistance change characteristics. The MXene-based film, owing to covalent bonds between PVP molecules and MXene sheets, exhibits high flame retardancy, making it suitable for sensitive and reusable fire alarms. Through thermal oxidation treatment, the MXene film transforms into a fish-scale-like C/N mixed titanium dioxide network, enabling it to quickly excite electrons under continuous flame exposure, achieving ultra-fast fire alarm response (about 3.0 seconds) and cyclic fire alarm function. A triply periodic minimal surface (TPMS) structure, which is invariant under a rank-3 lattice of translations and can be easily tunes the mechanical stiffness to enhance the PENG performance, is added as a spacer between the nanogenerator and the MXene/PVP film. By controllably adjusting parameters to generate TPMS structures of different thicknesses and subsequently using compression tests to find the optimal design for use as a spacer in the MPSFS, it was found that 0.2 mm, 0.3 mm, and 0.4 mm thicknesses resulted in 0.2 mm being the thickness with the lowest elastic modulus. This allows for the greatest degree of deformation when pressing the nanogenerator to charge it, and this finding was further validated through subsequent voltage output tests of the nanogenerator with the addition of spacers. Thus, it ensures the charging performance of the MPSFS.
In summary, this study proposes an innovative method to create a small, self-powered fire alarm system using piezoelectric nanogenerators (PENGs), MXene/PVP films, and triply periodic minimal surface (TPMS) structure spacers, achieving efficient energy harvesting and fire monitoring. The MXene/PVP films provide excellent flame retardancy and reusability in fire response, while the introduction of TPMS structures not only enhances the mechanical strength of the system but also improves the charging efficiency of the nanogenerator due to their inherent elasticity. This innovative system significantly reduces fire risk and demonstrates great potential and application prospects in advancing fire safety technology.
關鍵字(中) ★ 近場電紡織技術(NFES)
★ PVDF-TrFE微奈米纖維
★ TPMS結構
★ 自供能循環火災報警傳感器 (MPSFS)
★ Ti3C2Tx MXene
關鍵字(英) ★ Near-field electrospinning (NFES)
★ Poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE)
★ TPMS structure
★ MXene/PVP self-powered fire sensor
★ Ti3C2Tx MXene
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文大致架構 3
第二章 文獻回顧 5
2.1 壓電效應 5
2.1.1. 正壓電效應 (Direct Piezoelectric Effect) 6
2.1.2. 逆壓電效應 (Converse Piezoelectric Effect) 7
2.2 具壓電性質之材料 8
2.2.1. 壓電材料種類 8
2.2.2. 壓電材料操作模式 9
2.3 壓電聚合物 11
2.4 近場電紡織技術 14
2.4.1. 近場電紡織技術背景 14
2.4.2. 近電紡織技術原理 14
2.5 奈米發電機 17
2.5.1. 壓電奈米發電機(Piezoelectric Nanogenerator) 17
2.6 Ti3C2Tx MXene 19
2.7 聚乙烯吡咯烷酮PVP 20
2.8 MXene/PVP 21
2.9聚二甲基矽氧烷(PDMS) 22
2.10三重周期最小曲面TPMS (Triply periodic minimal surface)結構 23
2.11 LCD (Liquid Crystal Display)光固化3D列印 25
2.12各火災感測器性能及表徵比較 27
第三章 基於Ti3C2Tx MXene/PVP/壓電纖維多層嵌入積層製造的TPMS結構墊片之自供電火災報警系統 28
3.1導論 28
3.2實驗方法及步驟 29
3.2.1 電紡絲製作方法及材料 29
3.2.2 Ti3C2Tx MXene /PVP之多層膜製備 31
3.2.3 TPMS結構設計 32
3.2.4 量測設備及應用 34
3.3結果與討論 35
3.4補充資料 53
第四章 結論 55
第五章 未來展望 57
參考文獻 58
實 驗 儀 器 64
參考文獻 [1] S. Bairagi et al., "A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs", Int. J. Energy Res., 2020, 44(7), 5545-5563, https://doi.org/10.1002/er.5306
[2] Y. Pang, et al., "Multilayered Cylindrical Triboelectric Nanogenerator to Harvest Kinetic Energy of Tree Branches for Monitoring Environment Condition and Forest Fire," Adv. Funct. Mater., 2020, 30, 32, 2003528, https://doi.org/10.1002/adfm.202003598
[3] S. A. Han et al., "Point-Defect-Passivated MoS2 Nanosheet-Based High Performance Piezoelectric Nanogenerator," Adv. Funct. Mater., 2018, 30, 21, 1800342, https://doi.org/10.1002/adma.201800342
[4] S. R. Patil et al., "Triboelectric Nanogenerator Based on Biowaste Tribopositive Delonix Regia Flowers Powder," Energy Tech., 2022, 10(12), 2200876, https://doi.org/10.1002/ente.202200876
[5] S. Yan, Z. et al., "Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting," Int. J. Energy Res., 2021, 45(7), 11053-11064, https://doi.org/10.1002/er.6589
[6] L. Lu, et al.,"Flexible PVDF based piezoelectric nanogenerators." Nano Energy, 2020, 78, 105251, https://doi.org/10.1016/j.nanoen.2020.105251
[7] Y. K. Fuh et al., "A fully packaged self-powered sensor based on near-field electrospun arrays of poly(vinylidene fluoride) nano/micro fibers," EXPRESS Polym. Lett, 2018, 12(2), 136–145, https://doi.org/10.3144/expresspolymlett.2018.12
[8] M. H. Syu, Y. J. Guan, W. C. Lo, Y. K. Fuh. "Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method." Nano Energy, 2020, 76, 105029, https://doi.org/10.1016/j.nanoen.2020.105029
[9] Z. Xiaofang et al., "PVDF-based and its Copolymer-Based Piezoelectric Composites: Preparation Methods and Applications." J. Electron. Mater, 2022, 51, 5528–5549, https://doi.org/10.1007/s11664-022-09825-y
[10] S. Katzir, "The discovery of the piezoelectric effect," in The beginnings of piezoelectricity: Springer, 2006, 15-64.
[11] K. Uchino, "Advanced piezoelectric materials: Science and technology. Woodhead Publishing," 2017.
[12] M. Birkholz, "Crystal-field induced dipoles in heteropolar crystals II: Physical significance," Zeitschrift für Physik B Condensed Matter, 96(3), 333-340, 1995, https://doi.org/10.1007/BF01313055
[13] C. Covaci and A. Gontean, "Piezoelectric energy harvesting solutions: A review," Sensors, 2020, 20(12), 3512, https://doi.org/10.3390/s20123512
[14] X. Hu et al., "Increased effective piezoelectric response of structurally modulated P (VDF-TrFE) film devices for effective energy harvesters," Materials & Design, 2020, 192, 108700. https://doi.org/10.1016/j.matdes.2020.108700
[15] G. Zhu et al., "Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification," Nano letters, 2014, 14(6), 3208-3213, https://doi.org/10.1021/nl5005652
[16] N. Soin, S. Anand, and T. Shah, "Energy harvesting and storage textiles," in Handbook of Technical Textiles: Elsevier, 2016, 357-396. https://doi.org/10.1016/B978-1-78242-465-9.00012-4
[17] S. Ebnesajjad, "Introduction to fluoropolymers," in Applied Plastics Engineering Handbook: Elsevier, 2017, 55-71.
[18] D. W. Grainger, "Fluorinated Biomaterials," in Biomaterials Science: Elsevier, 2020, 125-138. https://doi.org/10.1016/j.jconrel.2021.09.001.
[19] Q. Zhang et al., "Poly (vinylidene fluoride)(PVDF) and its copolymers," Encyclopedia of smart materials, 2002.
[20] N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnol. Adv., 28(3), 325-347, 2010.
[21] G. I. Taylor, "Electrically driven jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969. 313(1515), 453-475.
[22] X.-X. He et al., "Near-Field Electrospinning: Progress and Applications," J. Phys. Chem. C., 2017, 121(16), 8663–8678, https://doi.org/10.1021/acs.jpcc.6b12783
[23] F.-R. Fan et al., "Flexible triboelectric generator," Nano energy, 2012. 1(2), 328-334, https://doi.org/10.1016/j.nanoen.2012.01.004
[24] R. Yang et al., "Power generation with laterally packaged piezoelectric fine wires," Nature nanotechnology, 2009. 4(1), 4-39, https://doi.org/10.1038/nnano.2008.314.
[25] Zhan, X., Si, C., Zhou, J., & Sun, Z.. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020, 5(2), 235-258. https://doi.org/10.1039/C9NH00571
[26] Lee, S. H., Eom, W., Shin, H., Ambade, R. B., Bang, J. H., Kim, H. W., & Han, T. H. Room-temperature, highly durable Ti3C2T x MXene/graphene hybrid fibers for NH3 gas sensing. ACS applied materials & interfaces, 2020, 12(9), 10434-10442. https://doi.org/10.1021/acsami.9b21765
[27] Li, W., Song, Z., Zhong, J., Qian, J., Tan, Z., Wu, X., ... & Ran, X.. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. Journal of Materials Chemistry C, 2019, 7(33), 10371-10378, DOI https://doi.org/10.1039/C9TC02715G
[28] Anasori, Babak, et al. "Two-dimensional, ordered, double transition metals carbides (MXenes)." ACS nano 9.10 (2015): 9507-9516, https://doi.org/10.1021/acsnano.5b03591
[29] Huang, H., Dong, D., Li, W., Zhang, X., Zhang, L., Chen, Y., ... & Lu, X. Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chinese Journal of Chemical Engineering, 2020, 28(7), 1981-1993. https://doi.org/10.1016/j.cjche.2020.04.014
[30] Xue, Y., Feng, J., Huo, S., Song, P., Yu, B., Liu, L., & Wang, H.. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chemical Engineering Journal, 2020, 397, 125336. https://doi.org/10.1016/j.cej.2020.125336
[31] Tan, K. H., Samylingam, L., Aslfattahi, N., Saidur, R., & Kadirgama, K.. Optical and conductivity studies of polyvinyl alcohol-MXene (PVA-MXene) nanocomposite thin films for electronic applications. Optics & Laser Technology, 2021, 136, 106772. https://doi.org/10.1016/j.optlastec.2020.106772
[32] Luo, X., Zhu, L., Wang, Y. C., Li, J., Nie, J., & Wang, Z. L. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Advanced Functional Materials, 2021, 31(38), 2104928. https://doi.org/10.1002/adfm.202104928
[33] Mao, M., Yu, K. X., Cao, C. F., Gong, L. X., Zhang, G. D., Zhao, L., ... & Tang, L. C.. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615. https://doi.org/10.1016/j.cej.2021.131615
[34] Bragaglia, Mario, et al. "3D printing of polybutadiene rubber cured by photo-induced thiol-ene chemistry: A proof of concept." Express Polymer Letters 14.6 (2020).
[35] A. Victor, J. Ribeiro, and F. F. Araújo, "Study of PDMS characterization and its applications in biomedicine: A review," Journal of Mechanical Engineering and Biomechanics, 2019. 4(1), 1-9, https://doi.org/10.24243/JMEB/4.1.163
[36] Jones, Alistair, et al. "Investigating mechanical properties of additively manufactured multimaterial gyroids: The effect of proportion, scale and shape." Additive Manufacturing 76 (2023): 103784, https://doi.org/10.1016/j.addma.2023.103784
[37] Yu, Shixiang, Jinxing Sun, and Jiaming Bai. "Investigation of functionally graded TPMS structures fabricated by additive manufacturing." Materials & Design 182 (2019): 108021, https://doi.org/10.1016/j.matdes.2019.108021
[38] Feng, Jiawei, et al. "Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications." International Journal of Extreme Manufacturing 4.2 (2022): 022001, https://doi.org/ 10.1088/2631-7990/ac5be6
[39] Maines, Erin M., et al. "Sustainable advances in SLA/DLP 3D printing materials and processes." Green Chemistry 23.18 (2021): 6863-6897, https://doi.org/ 10.1039/D1GC01489G
[40] Finnes, Tyler. "High definition 3d printing–comparing sla and fdm printing technologies." The Journal of Undergraduate Research 13.1 (2015): 3, http://openprairie.sdstate.edu/jur/vol13/iss1/3
[41] Mao, M., Yu, K. X., Cao, C. F., Gong, L. X., Zhang, G. D., Zhao, L., ... & Tang, L. C.. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615. https://doi.org/10.1016/j.cej.2021.131615
[42] Peng, Tianshu, et al. "Multifunctional MXene/aramid nanofiber composite films for efficient electromagnetic interference shielding and repeatable early fire detection." ACS omega 7.33 (2022): 29161-29170, https://doi.org/10.1021/acsomega.2c03219
[43] Zhang, Lei, et al. "Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor." Composites Part B: Engineering 223 (2021): 109149, https://doi.org/10.1016/j.compositesb.2021.109149
[44] Zhang, Zhao-Hui, et al. "Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response." Chemical Engineering Journal 386 (2020): 123894. https://doi.org/10.1016/j.cej.2019.123894
[45] Y. Bin et al., "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density." Nano Energy, 2018, 48, 464-470, https://doi.org/10.1016/j.nanoen.2018.03.064
[46] Liu, Yingchun, et al. "Highly thermal conductivity and flame retardant flexible graphene/MXene paper based on an optimized interface and nacre laminated structure." Composites Part A: Applied Science and Manufacturing 141 (2021): 106227. https://doi.org/10.1016/j.compositesa.2020.106227
[47] Si, Jing-Yu, et al. "Functionalization of MXene nanosheets for polystyrene towards high thermal stability and flame retardant properties." Polymers 11.6 (2019): 976. https://doi.org/10.3390/polym11060976
[48] Chen, Wenhua, et al. "A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor." Chemical Engineering Journal 353 (2018): 115-125. https://doi.org/10.1016/j.cej.2018.07.110
[49] J. Wang, C. C. Chen, C. Y. Shie , T. T. Li , Y. K. Fuh. "A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication." Sensors and Actuators A: Physical, 2022, 342, 113622, https://doi.org/10.1016/j.sna.2022.113622
[50] Mi. H. Xu, Ch. Y. Shie, Ch. Ch. Chen, Y. K. Kwan, W. Ch. Lo, H. F. Chen, Y. H. Lin, Yiin Kuen Fuh, "All directional nanogenerators (NGs) with a highly flexible and near field electrospun concentrically aligned nano/micro P(VDF-TrFE) fibers," Microsyst., 2022, 28, 2549–2560, https://doi.org/10.1007/s00542-022-05387-5
[51] T. H. Lee, C. Y. Chen, C. Y. Tsai,Y. K. Fuh, "Near-field electrospun piezoelectric fibers as sound-sensing elements." Polymers, 2018, 10(7), 692, https://doi.org/10.3390/polym10070692
[52] Y. K. Fuh, B. S. Wang. "Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition." Nano Energy, 2016, 30, 677-683, https://doi.org/10.1016/j.nanoen.2016.10.061
[53] B. Azimi et al.,"Electrospinning piezoelectric fibers for biocompatible devices," Adv. Healthc. Mater.., 2019, 1901287, https://doi.org/10.1002/adhm.201901287
[54] S. Niu et al., "Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage." T-ED, 2014, 62(2), 641 - 647, https://doi.org/10.1109/TED.2014.2377728
[55] Xie, Huali, et al. "A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities." Chemical Engineering Journal 369 (2019): 8-17, https://doi.org/10.1016/j.cej.2019.03.045
[56] Shi, Yongqian, et al. "Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety." Chemical Engineering Journal 399 (2020): 125829, https://doi.org/10.1016/j.cej.2020.125829
[57] Gong, Kaili, et al. "MXene as emerging nanofillers for high-performance polymer composites: A review." Composites Part B: Engineering 217 (2021): 108867, https://doi.org/10.1016/j.compositesb.2021.108867
[58] Huang, Yubin, et al. "Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating." Chemical Engineering Journal 391 (2020): 123621, https://doi.org/10.1016/j.cej.2019.123621
指導教授 傅尹坤(Yiin Kuen Fuh) 審核日期 2024-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明