博碩士論文 110323604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.220.1.11
姓名 穆巴陽(Muhammad Insanjati Bhayangkara)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 旋轉雙壁轉鼓中二元密度混合物顆粒的分 離模式
(Segregation Pattern of Binary-Density Granular Mixtures in a Rotating Double-Walled Drum)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 本研究的目的是使用不同的顆粒混合物密度比、旋轉速度和填充度來研究雙壁
旋轉滾筒內顆粒混合物的偏析行為。實驗使用高速攝影機捕捉顆粒材料的運動,並
用影像處理技術分析滾筒內的顆粒動態行為,計算顆粒的位置、速度、擾動和顆粒
溫度。
實驗結果顯示,密度比、轉速和填充度對二元密度顆粒混合物的偏析有顯著影
響。兩種不同密度地顆粒發生的相分離的模式有浮力效應(BE)、混合態(MS)、
雙偏析效應(DSE)、相轉移(PT)和反浮力效應(RBE)。在密度比為最低值
(1.75)時,任何轉速或填充度下都不會發生偏析。當密度比增加時 (≥ 3.19),在低
轉速之下(Fr=0.5)會觀察到一種稱為浮力效應 (BE) 的偏析模式,導致較重的顆粒向
內壁遷移。當轉速在 Fr = 1 時,每種密度比的偏析模式都仍處於混合狀態 (MS)。在
較高的旋轉速度下,相分離模式會先出現雙重偏析效應(DSE),之後再隨轉速增加
而到達相轉移 (PT) 區域。在 Fr = 4 時,密度比為 5.62 和 8.75 會產生反浮力效應
(RBE),亦即較重的顆粒會移動到外壁附近,同時,對於 5.62 和 8.75 這種較高的密
度比,降低填充度對加速偏析行為有顯著影響。另外,增加密度比會提高顆粒的顆
粒溫度。當 Fr <1 及 Fr ≥ 3.5 時,最大的重顆粒溫度分別出現在內壁及外壁附近;而
當 Fr = 1.5 時,最大的重顆粒溫度則出現在滾筒的中間區域。本研究的結果可以應
用於許多工業製程,例如材料密度分級和功能分級材料不同結構的處理。
關鍵字:轉鼓、轉速、密度比、填充度、相分離模式、顆粒溫度
摘要(英) The purpose of this research is to investigate particle mixture segregation behavior
inside a double-walled rotating drum using various particle mixture density ratios, rotation
speeds, and filling degrees. The motion of the granular materials was captured with a highspeed camera for image processing and analysis of particle segregation behavior inside the
drum. Particle positions, movements, velocities, fluctuations, and granular temperatures
were all measured.
The experimental results show that density ratios, rotation speeds, and filling
degrees have a significant impact on segregation in binary-density granular mixtures. The
results illustrate the phase segregation patterns including buoyancy effect (BE), mixing
state (MS), double segregation effect (DSE), phase transfer (PT), and reverse buoyancy
effect (RBE). Under the lowest value of density ratio with 1.75, the segregation could not
occur at any rotation speeds or filling degrees. A segregation pattern known as the
buoyancy effect (BE) is observed when the density ratio increase to greater than 3.19 and
the rotation speed is in a low value of Fr=0.5, in which the heavier particles migrate
towards the inner wall. While at Fr = 1, the segregation pattern for every density ratio
remains in the mixing state (MS). A double segregation effect (DSE) appears before
reaching the phase transfer (PT) zone. At higher rotational speeds, the phase segregation
pattern entering phase transfer (PT) zone before fully migrated to the outer wall. The
heavier particles fully move near the outer wall, resulting the reverse buoyancy effect
(RBE) at Fr = 4 for density ratios of 5.62 and 8.75. The result additionally demonstrates
that reducing the filling degree has a significant effect on hastening segregation behavior
for higher density ratios of 5.62 and 8.75. Increasing the density ratio would raise the
granular temperature of the particles. The highest granular temperature of heavy particles
occurs near the inner and outer side walls when Fr < 1 and Fr≥ 3.5, respectively.
Furthermore, the maximum granular temperature is found in the center of the drum space
at Fr = 1.5. When heavier particles approach both side walls, the lighter particles are
forced to move in the opposite direction. The outcomes of this study can be used in many
industrial processes, such as material density grading and different structures of
functionally graded materials.
Keywords : Rotating drum, Rotation speed, Density ratio, filling degree, Phase segregation
pattern, Granular temperature
關鍵字(中) ★ 轉鼓
★ 轉速
★ 密度比
★ 填充度
★ 相分離模式
★ 顆粒溫度
關鍵字(英) ★ Rotating drum
★ Rotation speed
★ Density ratio
★ Filling degree
★ Phase segregation pattern
★ Granular temperature
論文目次 摘要 .................................................................................................................................. i
Abstract ......................................................................................................................... ii
Acknowledgement ......................................................................................................... iii
Table of Contents........................................................................................................... iv
List of Figures ............................................................................................................... vi
List of Tables ............................................................................................................... vii
Chapter 1. Introduction ................................................................................................ 1
1.1 Particles in general .................................................................................................... 1
1.2 The particles segregation phenomenon in the rotating drum .................................... 1
1.2.1 Size segregation ............................................................................................ 3
1.2.2 Density segregation ....................................................................................... 3
1.3 The flowing pattern of the particles in the rotating drum.......................................... 4
1.3.1 Slipping motion ............................................................................................. 4
1.3.2 Cascading motion ......................................................................................... 5
1.3.3 Cataracting motion ....................................................................................... 5
1.4 The effect of density ratio, rotation speeds and filling degrees of particles.............. 7
1.5 Research motivations and objectives ........................................................................ 8
1.5.1 Motivations ................................................................................................... 8
1.5.2 Objectives ..................................................................................................... 9
1.6 Thesis structure........................................................................................................ 10
Chapter 2. Experimental Methods and Principles.................................................... 11
2.1 Experimental equipment ......................................................................................... 11
2.2 Principles and methods ........................................................................................... 18
2.2.1 Principle of experimental parameters.......................................................... 18
2.2.2 Image processing analysis method .............................................................. 20
2.2.3 The concept of granular temperature........................................................... 21
2.3 Experimental process and matching of rotating drum density segregation
effect........................................................................................................................ 22
2.3.1 Experimental configuration......................................................................... 22
2.3.2 Experimental process and steps................................................................... 22
v
2.4 Initial position analysis ........................................................................................... 26
Chapter 3. Results and Discussion.............................................................................. 27
3.1 Experimental images .............................................................................................. 27
3.2 The local concentration of heavy particles.............................................................. 30
3.3 Segregation index evolution of particle mixtures.................................................... 34
3.4 Segregation index at different filling degrees ........................................................ 38
3.5 Phase diagram of segregation pattern of binary-density mixtures.......................... 41
3.6 Distribution of the granular temperature ................................................................ 45
Chapter 4. Conclusions................................................................................................ 52
4.1 Conclusions ............................................................................................................ 52
References...................................................................................................................... 55
參考文獻 [1] Tripathi, A., & Khakhar, D. v. (2011). Rheology of binary granular mixtures in the
dense flow regime. Physics of Fluids, 23(11). https://doi.org/10.1063/1.3653276
[2] Jain, N., Ottino, J. M., & Lueptow, R. M. (2005). Combined size and density
segregation and mixing in noncircular tumblers. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 71(5).
https://doi.org/10.1103/PhysRevE.71.051301
[3] Jain, N., Ottino, J. M., & Lueptow, R. M. (2005). Regimes of segregation and
mixing in combined size and density granular systems: An experimental study.
Granular Matter, 7(2–3), 69–81. https://doi.org/10.1007/s10035-005-0198-x
[4] Gajjar, P., Johnson, C. G., Carr, J., Chrispeels, K., Gray, J. M. N. T., & Withers, P.
J. (2021). Size segregation of irregular granular materials captured by timeresolved 3D imaging. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-
021-87280-1
[5] Collinge, J., Sidle, K. C. L., Meads, J., Ironside, J., & Hill, A. F. (1996). Brazil-nut
effect. In Jullien, R. & Meakin, P. Nature (Vol. 383, Issue 2). www.nature.com
[6] Gray, J. M. N. T., & Ancey, C. (2015). Particle-size and -density segregation in
granular free-surface flows. Journal of Fluid Mechanics, 779, 622–668.
https://doi.org/10.1017/jfm.2015.438
[7] Eskin, D., & Kalman, H. (2000). A numerical parametric study of size segregation
in a rotating drum. In Chemical Engineering and Processing (Vol. 39).
www.elsevier.com/locate/cep
[8] Ristow, G. H. (1994). Particle Mass Segregation in a Two-Dimensional Rotating
Drum. In EUROPHYSICS LETTERS Europhys. Lett (Vol. 28, Issue 2).
[9] Khakhar, D. v, Orpe, A. v, & Hajra, S. K. (2003). Segregation of granular materials
in rotating cylinders. In Physica A (Vol. 318).
www.sciencedirect.comwww.elsevier.com/locate/physic
[10] Pereira, G. G., Sinnott, M. D., Cleary, P. W., Liffman, K., Metcalfe, G., & Šutalo,
I. D. (2011). Insights from simulations into mechanisms for density segregation of
granular mixtures in rotating cylinders. Granular Matter, 13(1), 53–74.
https://doi.org/10.1007/s10035-010-0223-6
[11] Dury, C. M., & Ristow, G. H. (1999). Competition of mixing and segregation in
rotating cylinders. Physics of Fluids, 11(6), 1387–1394.
https://doi.org/10.1063/1.870003
[12] Rajchenbach, J. (1990). Flow in Powders: From Discrete Avalanches to
Continuous Regime (Vol. 29).
[13] Mark, J., & Gray, N. T. (2018). Annual Review of Fluid Mechanics Particle
Segregation in Dense Granular Flows. Annu. Rev. Fluid Mech, 50, 407–440.
https://doi.org/10.1146/annurev-fluid-122316
[14] McCoy, B. J., & Madras, G. (2005). Cluster kinetics of granular mixing. AIChE
Journal, 51(2), 406–414. https://doi.org/10.1002/aic.10338
[15] Decai, H., Ming, L., Gang, S., Yaodong, F., Min, S., Haiping, W., & Kaiming, D.
(2012). Ringlike spin segregation of binary mixtures in a high-velocity rotating
drum. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85(3).
https://doi.org/10.1103/PhysRevE.85.031305
[16] Zhou, G. G. D., Cui, K. F. E., Jing, L., Zhao, T., Song, D., & Huang, Y. (2020).
Particle Size Segregation in Granular Mass Flows With Different Ambient Fluids.
Journal of Geophysical Research: Solid Earth, 125(10).
https://doi.org/10.1029/2020JB019536
[17] Pereira, G. G., Pucilowski, S., Liffman, K., & Cleary, P. W. (2011). Streak patterns
in binary granular media in a rotating drum. Applied Mathematical Modelling,
35(4), 1638–1646. https://doi.org/10.1016/j.apm.2010.09.040
[18] Chou, S. H., Yang, F. C., & Hsiau, S. S. (2019). Influence of interstitial fluid
viscosity and particle size on creeping granular flow in a rotating drum.
International Journal of Multiphase Flow, 113, 179–190.
https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.012
[19] Liao, C. C., Hsiau, S. S., & Nien, H. C. (2015). Effects of density ratio, rotation
speed, and fill level on density-induced granular streak segregation in a rotating
drum. Powder Technology, 284, 514–520.
https://doi.org/10.1016/j.powtec.2015.07.030
[20] Tai, C. H., Hsiau, S. S., & Kruelle, C. A. (2010). Density segregation in a vertically
vibrated granular bed. Powder Technology, 204(2–3), 255–262.
https://doi.org/10.1016/j.powtec.2010.08.010
[21] Ottino, J. M., & Khakhar, D. v. (2000). MIXING AND SEGREGATION OF
GRANULAR MATERIALS. In Annu. Rev. Fluid Mech (Vol. 32).
www.annualreviews.org
[22] Arntz, M. M. H. D., den Otter, W. K., Briels, W. J., Bussmann, P. J. T., Beeltink,
H. H., & Boom, R. M. (2008). Granular mixing and segregation in a horizontal
rotating drum: A simulation study on the impact of rotational speed and fill level.
AIChE Journal, 54(12), 3133–3146. https://doi.org/10.1002/aic.11622
[23] Huang, D., Lu, M., Sen, S., Sun, M., Feng, Y., & Yang, A. (2013). Spin Brazil-nut
effect and its reverse in a rotating double-walled drum. European Physical Journal
E, 36(4). https://doi.org/10.1140/epje/i2013-13041-0
[24] Zuriguel, I., Gray, J. M. N. T., Peixinho, J., & Mullin, T. (2006). Pattern selection
by a granular wave in a rotating drum. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, 73(6). https://doi.org/10.1103/PhysRevE.73.061302
[25] Khakhar, D. v., McCarthy, J. J., & Ottino, J. M. (1999). Mixing and segregation of
granular materials in chute flows. Chaos, 9(3), 594–610.
https://doi.org/10.1063/1.166433
[26] Chou, S. H., Sheng, L. T., Huang, W. J., & Hsiau, S. S. (2020). Segregation pattern
of binary-size mixtures in a double-walled rotating drum. Advanced Powder
Technology, 31(1), 94–103. https://doi.org/10.1016/j.apt.2019.10.003
[27] Chou, S. H., Huang, P. H., & Hsiau, S. S. (2022). Research on size segregation
dynamics and processes of a binary mixture dense granular flow. Minerals
Engineering, 186. https://doi.org/10.1016/j.mineng.2022.107722
[28] Ciamarra, M. P., de Vizia, M. D., Fierro, A., Tarzia, M., Coniglio, A., & Nicodemi,
M. (2006). Granular species segregation under vertical tapping: Effects of size,
density, friction, and shaking amplitude. Physical Review Letters, 96(5).
https://doi.org/10.1103/PhysRevLett.96.058001
[29] Danckwerts, P. V. (1981). The Definition and Measurement of Some
Characteristics of Mixtures. In Insights into Chemical Engineering (pp. 268–287).
Elsevier. https://doi.org/10.1016/b978-0-08-026250-5.50050-2
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明