博碩士論文 111323047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.135.206.98
姓名 林杰楓(LIN,CHIEH-FONG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 316L不銹鋼歧管精密鑄造殼模變形及補償措施的實驗與數值研究
(Experimental and Numerical Investigation of Shell Mold Deformation and Compensation Measure in Precision Casting of 316L Stainless Steel Manifold)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 精密鑄造的品質顯著影響其製造成本。在不鏽鋼岐管的製造過程中,鑄件的尺寸精度是評估其品質的重要指標。為了控制精密鑄造過程中鑄件的變形,提出了一種基於反向變形原理的模具改善方法,步驟與方法如下:
1. 首先採用3D掃描技術定量測量蠟模以及相對應的精密鑄造零件的變形情況。
2. 根據反向變形原理,岐管蠟模的長邊(LS)和短邊(SS)部分進行變形補償。LS和SS的補償量分別為1.2mm和1.5mm。
3. 將補償後的蠟模型CAD導入FEM鑄造模擬軟體中,模擬鑄件冷卻後的位移以及方向,同時模擬殼模上的應力分佈。
4. 確認補償蠟模後精密鑄造模擬的尺寸精度在公差範圍內,並對實際蠟模進行修正。
5. 透過實際生產和3D測量技術,驗證零件的尺寸精度保持在±0.3毫米以內。
本研究的主要貢獻在於基於數值模擬研究反向變形原理並改善蠟模,透過實驗驗證,鑄件LS的最大偏差量從1.21毫米減小到0.13毫米,降低了89.1%,同時,SS的最大偏差量從1.22毫米減少到0.12毫米,降低了89.7%,尺寸公差控制在±0.3毫米以內。雖然應力所引起的裂縫確實存在並且已經實驗證實,但它們並不影響鑄件的生產品質。最終,所提出的幾何補償蠟模和精密鑄造產品成功完成了試生產,並順利進入到鑄造廠的實際批量生產。
摘要(英) The quality of investment casting significantly affects its manufacturing cost. During the manifold manufacturing process, the deformation of the casting is an important indicator for evaluating its quality. To control the deformation of castings during investment casting, a mold improvement method based on the deformation compensation principle is proposed: 1. First, perform 3D scanning technology to quantitatively measure the deformation of the wax model and the corresponding investment casting parts. 2. Based on the reverse deformation principle, perform deformation compensation on the long side (LS) and short side (SS) of the manifold′s wax pattern. The compensation amounts for the LS and SS are 1.5 mm and 1.2 mm, respectively. 3. Import the compensated wax model CAD into FEM software to simulate the displacement of the casting after cooling and simultaneously simulate the stress on the shell mold. 4. Confirm that the dimensional accuracy of the compensated wax model investment casting simulation is within the tolerance range, and make corrections to the actual wax mold. 5. Through actual production and 3D measurement technology, verify that the dimensional accuracy of the parts is maintained within ±0.3 mm. The main contribution of this paper aims to study the reverse deformation principle and improve the mold based on numerical simulation. Through experimental verification, the maximum deformation of the LS was reduced from 1.21 mm to 0.13 mm, a reduction of 89.1%, and the maximum deformation of the SS was reduced from 1.22 mm to 0.12 mm, a reduction of 89.7%, controlling deformation errors within ±0.3 mm. Ultimately, the proposed geometrically compensated wax pattern and investment casted products were successfully accomplished the pilot run and smooth transitions into actual mass production in the casting foundry. In the end, although stress-induced cracks do exist and have been experimentally confirmed, they do not affect the production quality of the castings.
關鍵字(中) ★ 精密鑄造
★ 蠟模
★ 變形補償
★ 位移
★ 應力
★ 316L不鏽鋼
關鍵字(英)
論文目次 摘 要 I
Abstract III
誌 謝 V
圖目錄 X
表目錄 XIV
第一章. 緒論 1
1-1 前言 1
1-2 研究動機與方法 4
第二章. 文獻回顧 6
2-1 精密鑄造 6
2-2 電腦輔助工程 6
2-3 鑄造變形的預測和數據分析 7
第三章. 材料與實驗設置 8
3-1 實驗設備 8
第四章. 不鏽鋼岐管模擬結果與探討 14
4-1 緒論 14
4-1-1 鑄件基本資料與常見缺陷 14
4-1-2 鑄造組樹方案 17
4-1-3 基本鑄造參數 18
4-2 實驗與模擬 21
4-2-1 岐管的位移模擬 21
4-2-2 變形補償原理 24
4-3 蠟件補償實驗與模擬 26
4-3-1 蠟模補償尺寸 26
4-3-2 補償後岐管位移模擬 28
4-3-3 補償後岐管實際位移 31
4-4 殼模應力之模擬結果 34
第五章. 結論 38
參考文獻 40
第六章. 附錄 44
參考文獻 [1] Pattnaik, S., Karunakar, D. B., & Jha, P. K., " Developments in investment casting process—A review," Journal of Materials Processing Technology, vol. 212, Part B, pp. 2332-2348, 2012.
[2] Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C., & Totong, K, " Rapid prototyping and tooling techniques: a review of applications for rapid investment casting," The International Journal of Advanced Manufacturing Technology, vol. 25, pp. 308-320, 2005.
[3] Jones, S., & Yuan, C., " Advances in shell moulding for investment casting," Journal of Materials Processing Technology, vol. 135, Issue 1-3, pp. 258-265, 2003.
[4] Lee, C. W., Chua, C. K., Cheah, C. M., Tan, L. H., & Feng, C., " Rapid investment casting: direct and indirect approaches via model maker II," The International Journal of Advanced Manufacturing Technology, vol. 25, pp. 26-32, 2004.
[5] Kao, Y. C., Ho, M. H., Tseng, H. W., Huang, C. F., Lee, S. C., Chan, C. W., & Fuh, Y. K., " Computer-Aided Engineering (CAE) simulation for the robust gating system design: improved process for investment casting defects of 316L stainless steel valve housing," International Journal of Metalcasting, vol. 16, pp. 2014-2032, 2022.
[6] Tseng, H. W., Chen, T. Y., Kao, Y. C., Huang, C. F., Liu, Y. C., Lee, S. C., & Fuh, Y. K. " Effect of shell mold thickness and insulating wool pattern on internal porosity in investment casting of vortex flow meter, " The International Journal of Advanced Manufacturing Technology, vol. 127, pp. 2371-2385, 2023.
[7] Melali, P., Boutorabi, S. M. A., & Divandari, M., "Influence of number of investment cast revert remelting on microstructure and mechanical properties of Fe–Cr–Co heat-resistant stainless steel alloy," International Journal of Metalcasting, vol. 18, pp. 1739-1749, 2023.
[8] Liu, C., Jin, S., Lai, X., He, B., & Li, F., "D Influence of complex structure on the shrinkage of part in investment casting process," The International Journal of Advanced Manufacturing Technology, vol. 77, pp. 1191-1203, 2015.
[9] Dong, Y. W., Li, X. L., Zhao, Q., Yang, J., & Dao, M., " Modeling of shrinkage during investment casting of thin-walled hollow turbine blades," Journal of Materials Processing Technology, vol. 244, pp. 190-203, 2017.
[10] Bonilla, W., Masood, S. H., & Iovenitti, P., " An investigation of wax patterns for accuracy improvement in investment cast parts," The International Journal of Advanced Manufacturing Technology, vol. 18, pp. 348-356, 2001.
[11] Rafique, M. M. A., & Iqbal, J., " Modeling and simulation of heat transfer phenomena during investment casting," International Journal of Heat and Mass Transfer, vol. 52, pp. 2132-2139, 2009.
[12] Rosochowski, A., & Matuszak, A., " Rapid tooling: the state of the art," Journal of materials processing technology, vol. 106, pp. 191-198, 2000.
[13] Singh, R., & Singh., " Effect of process parameters on surface hardness, dimensional accuracy and surface roughness of investment cast components," Journal of Mechanical Science and Technology, vol. 27, pp. 191-197, 2013.
[14] Singh, J., Singh, R., & Singh, H., " Dimensional accuracy and surface finish of biomedical implant fabricated as rapid investment casting for small to medium quantity production," Journal of Manufacturing Processes, vol. 25, pp. 201-211, 2017.
[15] Singh, D., Singh, R., & Boparai, K. S., "Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review," Journal of Manufacturing Processes, vol. 31, pp. 80-95, 2018.
[16] Sabau, A. S., & Viswanathan, S., "Material properties for predicting wax pattern dimensions in investment casting," Materials Science and Engineering: A, vol. 362, pp. 125-135, 2003.
[17] Modukuru, S. C., Ramakrishnan, N., & Sriramamurthy, A. M., " Determination of the die profile for the investment casting of aerofoil-shaped turbine blades using the finite-element method," Journal of Materials Processing Technology, vol. 58, pp. 223-226, 1996.
[18] Jiang, J., & Liu, X. Y., " Dimensional variations of castings and moulds in the ceramic mould casting process," Journal of Materials Processing Technology, vol. 189, pp. 247-255, 2007.
[19] Almonti, D., Baiocco, G., Mingione, E., & Ucciardello, N., " FEM Simulations for the Optimization of the Inlet Gate System in Rapid Investment Casting Process for the Realization of Heat Exchangers," International Journal of Metalcasting, vol. 16, pp. 1152-1163, 2021.
[20] Jiang, R. S., Zhang, D. H., Bu, K., Wang, W. H., & Tian, J. W., " A deformation compensation method for wax pattern die of turbine blade," The International Journal of Advanced Manufacturing Technology, vol. 88, pp. 3195-3203, 2017.
[21] Rezavand, S. A. M., & Behravesh, A. H., " An experimental investigation on dimensional stability of injected wax patterns of gas turbine blades," Journal of Materials Processing Technology, vol. 182, pp. 580-587, 2007.
[22] Zhang, D. H., Jiang, R. S., Li, J. L., Wang, W. H., & Bu, K., " Cavity optimization for investment casting die of turbine blade based on reverse engineering," The International Journal of Advanced Manufacturing Technology, vol. 48, pp. 839-846, 2010.
[23] Dong, Y., Zhang, D., Bu, K., Dou, Y., & Wang, W., " Geometric parameter-based optimization of the die profile for the investment casting of aerofoil-shaped turbine blades," The International Journal of Advanced Manufacturing Technology, vol. 57, pp. 1245-1258, 2011.
[24] Everhart, W., Lekakh, S., Richards, V., Chen, J., Li, H., & Chandrashekhara, K., " Corner strength of investment casting shells," The International Journal of Advanced Manufacturing Technology, vol. 7, pp. 21-27, 2013.
[25] Jin, S., Liu, C., Lai, X., Li, F., & He, B., " Bayesian network approach for ceramic shell deformation fault diagnosis in the investment casting process," The International Journal of Advanced Manufacturing Technology, vol. 59, pp. 156-165, 2017.
[26] Givi, M., Cournoyer, L., Reain, G., & Eves, B. J., " Performance evaluation of a portable 3D imaging system," Precision Engineering, vol. 88, pp. 663-674, 2019.
[27] Subeshan, B., Abdulaziz, A., Khan, Z., Uddin, M. N., Rahman, M. M., & Asmatulu, E., " In TMS 2022 151st annual meeting & exhibition supplemental proceedings," Springer International Publishing, pp. 238-246, 2022.
[28] Saunders, N., Guo, U. K. Z., Li, X., Miodownik, A. P., & Schillé, J. P., " Using JMatPro to model materials properties and behavior," Jom, vol. 55, pp. 60-65, 2003.
[29] Chen, T. Y., Wang, Y. C., Huang, C. F., Liu, Y. C., Lee, S. C., Chan, C. W., & Fuh, Y. K., " Formation mechanism and improved remedy of thermal property of cold shut surface defects in Vortex Flow Meters: Numerical simulation and experimental verification in investment casting of 316 L stainless steel," Journal of Manufacturing Processes, vol. 120, pp. 542-554, 2024.
指導教授 傅尹坤(Yiin-kuen Fuh) 審核日期 2024-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明