博碩士論文 109323606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:160 、訪客IP:18.117.158.93
姓名 約新(Khafidz Anshori Yosin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 置入物形狀對儲槽中顆粒排放行為之影響
(The Influence of Obstacle Shape on Particle Discharge Behavior in a Silo)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 本研究的目的是探討在筒倉中插入多種形狀障礙物對顆粒流速的影響。隨著堵塞現象可能對食品和藥品的儲存造成負面影響,這個問題尤其需要認真對待。保持顆粒流動並減少阻塞時間,是提高工作效率的關鍵。我們通過實驗研究了三角形、正方形、七邊形和圓形障礙物在二維平底筒倉中對流速的影響。在這些情況下,我們考慮了障礙物的旋轉速度變化和垂直軸上位置的變化。研究發現,與其他形狀相比,三角形障礙物對顆粒流速影響最大,表現出最快的流速。此外,旋轉速度也對流速有顯著影響,低速度下的流速最慢,而中速度和高速度則表現出相似且較快的流量。障礙物在垂直軸上的位置對流速同樣有重要影響,障礙物越靠近出口,堵塞現象越明顯,因為這會影響顆粒在出口通道中的流動。這些研究結果有助於理解和優化筒倉中顆粒流動的條件,從而提高產業儲存和運輸過程中的效率和可靠性。
摘要(英) The objective this study to investigate the effect of inserting obstacles that have several shapes on the particle flow rate in the silo. The flow rate that occurs with clogging has a negative impact on the storage of foodstuffs and medicines. Therefore, the impact of the clogging problem must be taken seriously, the particle flow rate must always flow and the clogging time must be reduced to increase efficiency in work. We present experimental results regarding the effect of triangular, square, heptagon and circle obstacles on particle flow rates in 2D flat bottom silos. In this case, we add variations in rotational speed differences and variations in obstacle position on the vertical axis. We found that the flow rate in the triangle has the fastest flow rate compared to the flow rate in other shape of obstacles. Rotational speed also affects flow rate with the result that lowest rotational speed has the slowest flow rate. Meanwhile, medium and high rotational speed have similar and constant flow rates. The placement of obstacles on the vertical axis has an influence on the flow rate. The farther the object is from the outlet, the more clogging will disappear because the more particles can remain in the outlet lane.
關鍵字(中) ★ 筒倉
★ 阻塞
★ 流量
關鍵字(英) ★ silo
★ clogging
★ flow rate
論文目次 List of Content
Chinese Abstract i
Abstract ii
Acknowledge iii
List of Content iv
List of Figures v
Acronym x
CHAPTER I
1.1 Introduction 1
1.2 Literature Review 2
1.3 Research Motivation 9
CHAPTER II
2.1 Experimental Equipment 17
2.2 Research Methodology 19
2.3 Experimental Step 20
CHAPTER III
3.1 Effect of variation obstacle shape, rotational speed, and position of obstacle shape 28
3.2 Analysis of effect velocity field and mesh velocity 31
CHAPTER IV
4.1 Conclusion 63
Reference 64
參考文獻 [1] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo, and D. Maza, “Silo clogging reduction by the presence of an obstacle,” Phys Rev Lett, vol. 107, no. 27, Dec. 2011, doi: 10.1103/PhysRevLett.107.278001.
[2] López-Rodríguez, D. D., Gella, K. To, D. Maza, and I. Garcimartín, A., Zuriguel, “Effect of hopper angle on granular clogging,” Phys Rev E, vol. 99, 2019, doi: https://doi.org/10.1103/PhysRevE.99.032901.
[3] A. Harmens, “Flow of granular material through horizontal apertures,” Chem Eng Sci, vol. 18, no. 5, pp. 297–306, 1963, doi: https://doi.org/10.1016/0009-2509(93)80005-B.
[4] W. A. Beverloo, H. A. Leniger, and J. van de Velde, “The flow of granular solids through orifices,” Chem Eng Sci, vol. 15, no. 3, pp. 260–269, 1961, doi: https://doi.org/10.1016/0009-2509(61)85030-6.
[5] R. M. Nedderman, Statics and Kinematics of Granular Materials. Cambridge: Cambridge University Press, 1992. doi: DOI: 10.1017/CBO9780511600043.
[6] B. P. Tighe and M. Sperl, “Pressure and motion of dry sand: Translation of Hagen’s paper from 1852,” Granul Matter, vol. 9, no. 3–4, pp. 141–144, Jun. 2007, doi: 10.1007/s10035-006-0027-x.
[7] A. W. Jenike, “Principles of Powder Mechanics : By R. L. Brown and J. C. Richards, International Series of Monographs in Chemical Engineering, Vol. 10, Pergamon Press, Oxford, 1970; 223 pages; price: 60s.,” Powder Technol, vol. 4, p. 114, 1971, [Online]. Available: https://api.semanticscholar.org/CorpusID:101121701
[8] A. Janda, I. Zuriguel, and D. Maza, “Flow rate of particles through apertures obtained from self-similar density and velocity profiles,” Phys Rev Lett, vol. 108, no. 24, Jun. 2012, doi: 10.1103/PhysRevLett.108.248001.
[9] J. C. Williams, “The rate of discharge of coarse granular materials from conical mass flow hoppers,” Chem Eng Sci, vol. 32, no. 3, pp. 247–255, 1977, doi: https://doi.org/10.1016/0009-2509(77)80202-9.
[10] M. Zaki and M. S. Siraj, “Study of a flat-bottomed cylindrical silo with different orifice shapes,” Powder Technol, vol. 354, pp. 641–652, Sep. 2019, doi: 10.1016/j.powtec.2019.06.041.
[11] I. Zuriguel, D. Maza, A. Janda, R. C. Hidalgo, and A. Garcimartín, “Velocity fluctuations inside two and three-dimensional silos,” Granul Matter, vol. 21, no. 3, Aug. 2019, doi: 10.1007/s10035-019-0903-9.
[12] A. Samadani, A. Pradhan, and A. Kudrolli, “Size segregation of granular matter in silo discharges,” 1999.
[13] A. Garcimartín, I. Zuriguel, L. A. Pugnaloni, and A. Janda, “Shape of jamming arches in two-dimensional deposits of granular materials,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 82, no. 3, Sep. 2010, doi: 10.1103/PhysRevE.82.031306.
[14] D. López-Rodríguez, D. Gella, K. To, D. Maza, A. Garcimartín, and I. Zuriguel, “Effect of hopper angle on granular clogging,” Phys Rev E, vol. 99, no. 3, p. 32901, Mar. 2019, doi: 10.1103/PhysRevE.99.032901.
[15] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo, and D. Maza, “Silo clogging reduction by the presence of an obstacle,” Phys Rev Lett, vol. 107, no. 27, Dec. 2011, doi: 10.1103/PhysRevLett.107.278001.
[16] G. A. Frank and C. O. Dorso, “Room evacuation in the presence of an obstacle,” Physica A: Statistical Mechanics and its Applications, vol. 390, no. 11, pp. 2135–2145, Jun. 2011, doi: 10.1016/j.physa.2011.01.015.
[17] C. Lozano, A. Janda, A. Garcimartín, D. Maza, and I. Zuriguel, “Flow and clogging in a silo with an obstacle above the orifice,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 86, no. 3, Sep. 2012, doi: 10.1103/PhysRevE.86.031306.
[18] A. V. K. Reddy, K. A. Reddy, I. Zuriguel, and H. Katsuragi, “Clogging phenomena in a system of asymmetric dumbbells,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2021, no. 6, Jun. 2021, doi: 10.1088/1742-5468/abffd3.
[19] Y. Han, J. Lee, S. Q. Choi, M. C. Choi, and M. W. Kim, “Shape-induced chiral ordering in two-dimensional packing of snowmanlike dimeric particles,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 88, no. 4, Oct. 2013, doi: 10.1103/PhysRevE.88.042202.
[20] D. R. Parisi, R. Cruz Hidalgo, and I. Zuriguel, “Active particles with desired orientation flowing through a bottleneck,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-27478-y.
[21] K. Endo, K. A. Reddy, and H. Katsuragi, “Obstacle-shape effect in a two-dimensional granular silo flow field,” Phys Rev Fluids, vol. 2, no. 9, Sep. 2017, doi: 10.1103/PhysRevFluids.2.094302.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2024-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明