參考文獻 |
[1] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo, and D. Maza, “Silo clogging reduction by the presence of an obstacle,” Phys Rev Lett, vol. 107, no. 27, Dec. 2011, doi: 10.1103/PhysRevLett.107.278001.
[2] López-Rodríguez, D. D., Gella, K. To, D. Maza, and I. Garcimartín, A., Zuriguel, “Effect of hopper angle on granular clogging,” Phys Rev E, vol. 99, 2019, doi: https://doi.org/10.1103/PhysRevE.99.032901.
[3] A. Harmens, “Flow of granular material through horizontal apertures,” Chem Eng Sci, vol. 18, no. 5, pp. 297–306, 1963, doi: https://doi.org/10.1016/0009-2509(93)80005-B.
[4] W. A. Beverloo, H. A. Leniger, and J. van de Velde, “The flow of granular solids through orifices,” Chem Eng Sci, vol. 15, no. 3, pp. 260–269, 1961, doi: https://doi.org/10.1016/0009-2509(61)85030-6.
[5] R. M. Nedderman, Statics and Kinematics of Granular Materials. Cambridge: Cambridge University Press, 1992. doi: DOI: 10.1017/CBO9780511600043.
[6] B. P. Tighe and M. Sperl, “Pressure and motion of dry sand: Translation of Hagen’s paper from 1852,” Granul Matter, vol. 9, no. 3–4, pp. 141–144, Jun. 2007, doi: 10.1007/s10035-006-0027-x.
[7] A. W. Jenike, “Principles of Powder Mechanics : By R. L. Brown and J. C. Richards, International Series of Monographs in Chemical Engineering, Vol. 10, Pergamon Press, Oxford, 1970; 223 pages; price: 60s.,” Powder Technol, vol. 4, p. 114, 1971, [Online]. Available: https://api.semanticscholar.org/CorpusID:101121701
[8] A. Janda, I. Zuriguel, and D. Maza, “Flow rate of particles through apertures obtained from self-similar density and velocity profiles,” Phys Rev Lett, vol. 108, no. 24, Jun. 2012, doi: 10.1103/PhysRevLett.108.248001.
[9] J. C. Williams, “The rate of discharge of coarse granular materials from conical mass flow hoppers,” Chem Eng Sci, vol. 32, no. 3, pp. 247–255, 1977, doi: https://doi.org/10.1016/0009-2509(77)80202-9.
[10] M. Zaki and M. S. Siraj, “Study of a flat-bottomed cylindrical silo with different orifice shapes,” Powder Technol, vol. 354, pp. 641–652, Sep. 2019, doi: 10.1016/j.powtec.2019.06.041.
[11] I. Zuriguel, D. Maza, A. Janda, R. C. Hidalgo, and A. Garcimartín, “Velocity fluctuations inside two and three-dimensional silos,” Granul Matter, vol. 21, no. 3, Aug. 2019, doi: 10.1007/s10035-019-0903-9.
[12] A. Samadani, A. Pradhan, and A. Kudrolli, “Size segregation of granular matter in silo discharges,” 1999.
[13] A. Garcimartín, I. Zuriguel, L. A. Pugnaloni, and A. Janda, “Shape of jamming arches in two-dimensional deposits of granular materials,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 82, no. 3, Sep. 2010, doi: 10.1103/PhysRevE.82.031306.
[14] D. López-Rodríguez, D. Gella, K. To, D. Maza, A. Garcimartín, and I. Zuriguel, “Effect of hopper angle on granular clogging,” Phys Rev E, vol. 99, no. 3, p. 32901, Mar. 2019, doi: 10.1103/PhysRevE.99.032901.
[15] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo, and D. Maza, “Silo clogging reduction by the presence of an obstacle,” Phys Rev Lett, vol. 107, no. 27, Dec. 2011, doi: 10.1103/PhysRevLett.107.278001.
[16] G. A. Frank and C. O. Dorso, “Room evacuation in the presence of an obstacle,” Physica A: Statistical Mechanics and its Applications, vol. 390, no. 11, pp. 2135–2145, Jun. 2011, doi: 10.1016/j.physa.2011.01.015.
[17] C. Lozano, A. Janda, A. Garcimartín, D. Maza, and I. Zuriguel, “Flow and clogging in a silo with an obstacle above the orifice,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 86, no. 3, Sep. 2012, doi: 10.1103/PhysRevE.86.031306.
[18] A. V. K. Reddy, K. A. Reddy, I. Zuriguel, and H. Katsuragi, “Clogging phenomena in a system of asymmetric dumbbells,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2021, no. 6, Jun. 2021, doi: 10.1088/1742-5468/abffd3.
[19] Y. Han, J. Lee, S. Q. Choi, M. C. Choi, and M. W. Kim, “Shape-induced chiral ordering in two-dimensional packing of snowmanlike dimeric particles,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 88, no. 4, Oct. 2013, doi: 10.1103/PhysRevE.88.042202.
[20] D. R. Parisi, R. Cruz Hidalgo, and I. Zuriguel, “Active particles with desired orientation flowing through a bottleneck,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-27478-y.
[21] K. Endo, K. A. Reddy, and H. Katsuragi, “Obstacle-shape effect in a two-dimensional granular silo flow field,” Phys Rev Fluids, vol. 2, no. 9, Sep. 2017, doi: 10.1103/PhysRevFluids.2.094302. |