參考文獻 |
1. Smedley, P.L. and D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 2002. 17(5): p. 517-568.
2. Hudson, N., A. Baker, and D. Reynolds, Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River research and applications, 2007. 23(6): p. 631-649.
3. Podgorski, J. and M. Berg, Global threat of arsenic in groundwater. Science, 2020. 368(6493): p. 845-850.
4. Smith, A.H., E.O. Lingas, and M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the world health organization, 2000. 78(9): p. 1093-1103.
5. Mori, S., E.J. Lowenstein, and C. Steffen, The largest mass poisoning in history: arsenic contamination of well water in Bangladesh. Skinmed, 2018. 16(4): p. 265-267.
6. Tseng, C.-H., et al., Lipid profile and peripheral vascular disease in arseniasis-hyperendemic villages in Taiwan. Angiology, 1997. 48(4): p. 321-335.
7. Chen, C.-J., et al., Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicology and applied pharmacology, 2005. 206(2): p. 198-206.
8. Liao, P.-J., et al., Low-to-moderate arsenic exposure and urothelial tract cancers with a long latent period of follow-up in an arseniasis Area. Journal of Epidemiology and Global Health, 2023. 13(4): p. 807-815.
9. Yang, C.-Y., et al., Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environmental Research, 2003. 91(1): p. 29-34.
10. Karagas, M.R., et al., Association of rice and rice-product consumption with arsenic exposure early in life. JAMA pediatrics, 2016. 170(6): p. 609-616.
11. Tseng, C.-H., et al., Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicology and applied pharmacology, 2005. 206(3): p. 299-308.
12. Chiou, H.-Y., et al., Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. American journal of epidemiology, 2001. 153(5): p. 411-418.
13. Kendall, C., Tracing nitrogen sources and cycling in catchments, in Isotope tracers in catchment hydrology. 1998, Elsevier. p. 519-576.
14. IARC, G., related effects: an updating of selected IARC monographs from volumes 1 to 42. Monographs on the Evaluation of Carcinogenic Risks to Humans, 1987. 6.
15. Chappell, W., et al., Inorganic arsenic: a need and an opportunity to improve risk assessment. Environmental health perspectives, 1997. 105(10): p. 1060-1067.
16. Al Lawati, W.M., et al., Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan. Journal of Hazardous Materials, 2013. 262: p. 970-979.
17. Liu, C.-W. and M.-Z. Wu, Geochemical, mineralogical and statistical characteristics of arsenic in groundwater of the Lanyang Plain, Taiwan. Journal of hydrology, 2019. 577: p. 123975.
18. Tseng, W., et al., A clinical study of blackfoot disease in Taiwan, an endemic peripheral vascular disease. Memoire College Med., National Taiwan University, 1961. 7: p. 1-18.
19. Lu, F.J., Fluorescent humic substances and blackfoot disease in Taiwan. Applied organometallic chemistry, 1990. 4(3): p. 191-195.
20. Liang, C.-P., et al., Spatial analysis of human health risk due to arsenic exposure through drinking groundwater in Taiwan’s Pingtung Plain. International Journal of Environmental Research and Public Health, 2017. 14(1): p. 81.
21. Chen, K.-Y. and T.-K. Liu, Major factors controlling arsenic occurrence in the groundwater and sediments of the Chianan coastal plain, SW Taiwan. Terrestrial, 2007(5).
22. Huang, Y.-K., et al., Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Food and Chemical Toxicology, 2003. 41(11): p. 1491-1500.
23. Liang, C.-P., et al., Comprehensive assessment of the impact of land use and hydrogeological properties on the groundwater quality in Taiwan using factor and cluster analyses. Science of The Total Environment, 2022. 851: p. 158135.
24. Wang, S.-J., et al., Evaluation of climate change impact on groundwater recharge in groundwater regions in Taiwan. Water, 2021. 13(9): p. 1153.
25. Tate III, R.L., Encyclopedia of Soils in the Environment: Volume 1-4. 2005, LWW.
26. 石再添, 張瑞津, and 林雪美, 臺灣東部河口地區之地形學研究. 國立臺灣師範大學地理研究報告, 1995(24): p. 1-38.
27. Liu, C.-W., C.-S. Jang, and C.-M. Liao, Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the Total Environment, 2004. 321(1-3): p. 173-188.
28. Selim Reza, A., et al., A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. Environmental geochemistry and health, 2011. 33: p. 235-258.
29. Lewis, C., D. Ray, and K.-K. Chiu, Primary geologic sources of arsenic in the Chianan Plain (Blackfoot disease area) and the Lanyang Plain of Taiwan. International Geology Review, 2007. 49(10): p. 947-961.
30. Liu, C.-W., et al., Hydrogeochemical and mineralogical investigations of arsenic-and humic substance-enriched aquifers. Journal of hydrology, 2013. 498: p. 59-75.
31. Marshall, G., et al., Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. Journal of the National Cancer Institute, 2007. 99(12): p. 920-928.
32. Yang, T.-N., et al., Paleohydrological changes in northeastern Taiwan over the past 2 ky inferred from biological proxies in the sediment record of a floodplain lake. Palaeogeography, palaeoclimatology, palaeoecology, 2014. 410: p. 401-411.
33. 王天慧, 2005年宜蘭雙主震之震源機制解:應用近場波形反演法探討區域地震機制, in 地質科學研究所. 2007, 國立臺灣大學: 台北市. p. 79.
34. Hsu, C.-H., et al., Constructing the comprehensive subsurface structure of Lanyang plain. Journal of Marine Science and Technology, 2012. 20(2): p. 10.
35. Jean, J.-S., et al., The Taiwan crisis: a showcase of the global arsenic problem. 2011: CRC Press.
36. Liao, V.H.-C., et al., Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of contaminant hydrology, 2011. 123(1-2): p. 20-29.
37. Kim, M.-J., J. Nriagu, and S. Haack, Carbonate ions and arsenic dissolution by groundwater. Environmental Science & Technology, 2000. 34(15): p. 3094-3100.
38. DeVore, C.L., et al., Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA. Environmental Science: Processes & Impacts, 2019. 21(3): p. 456-468.
39. 陳艾荻, 台灣溫泉水中溶解氣成分研究. 2010.
40. Hsu, L., Pleistocene formation with dissolved-in-water type gas in the Chianan plain, Taiwan. Petroleum Geology of Taiwan, 1984. 20: p. 199-213.
41. Kao, Y.-H., et al., Effect of sulfidogenesis cycling on the biogeochemical process in arsenic-enriched aquifers in the Lanyang Plain of Taiwan: Evidence from a sulfur isotope study. Journal of Hydrology, 2015. 528: p. 523-536.
42. Zobrist, J., et al., Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 2000. 34(22): p. 4747-4753.
43. Islam, F.S., et al., Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004. 430(6995): p. 68-71.
44. Johnston, S.G., E.D. Burton, and E.M. Moon, Arsenic mobilization is enhanced by thermal transformation of schwertmannite. Environmental Science & Technology, 2016. 50(15): p. 8010-8019.
45. Zhu, W., et al., Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochimica et Cosmochimica Acta, 2008. 72(21): p. 5243-5250.
46. 林柏成, 五價砷還原菌Citrobacter sp. strain L2之特性分析, in 生物環境系統工程學研究所. 2010, 國立臺灣大學. p. 1-63.
47. Mirza, B.S., et al., New arsenate reductase gene (arrA) PCR primers for diversity assessment and quantification in environmental samples. Applied and environmental microbiology, 2017. 83(4): p. e02725-16.
48. Giloteaux, L., et al., Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. The ISME journal, 2013. 7(2): p. 370-383.
49. Saltikov, C.W. and D.K. Newman, Genetic identification of a respiratory arsenate reductase. Proceedings of the National Academy of Sciences, 2003. 100(19): p. 10983-10988.
50. Luu, Y.-S. and J.A. Ramsay, Microbial mechanisms of accessing insoluble Fe (III) as an energy source. World Journal of Microbiology and Biotechnology, 2003. 19: p. 215-225.
51. Perez, J.P.H., et al., Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite. ACS Earth and Space Chemistry, 2019. 3(6): p. 884-894.
52. Stuckey, J.W., et al., Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 2016. 9(1): p. 70-76.
53. Wallis, I., et al., The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020. 13(4): p. 288-295.
54. Harvey, C.F., et al., Arsenic mobility and groundwater extraction in Bangladesh. Science, 2002. 298(5598): p. 1602-1606.
55. Islam, F., et al., Interactions between the Fe (III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe (II). Applied and Environmental Microbiology, 2005. 71(12): p. 8642-8648.
56. Rowland, H., et al., The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology, 2007. 5(3): p. 281-292.
57. Tufano, K.J., et al., Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environmental Science & Technology, 2008. 42(22): p. 8283-8289.
58. Valentine, D.L. and W.S. Reeburgh, New perspectives on anaerobic methane oxidation: minireview. Environmental microbiology, 2000. 2(5): p. 477-484.
59. Glodowska, M., et al., Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 2020. 1(1): p. 42.
60. Op den Camp, H.J., et al., Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 2009. 1(5): p. 293-306.
61. Leu, A.O., et al., Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. The ISME Journal, 2020. 14(4): p. 1030-1041.
62. Lipscomb, J.D., Biochemistry of the soluble methane monooxygenase. Annual review of microbiology, 1994. 48(1): p. 371-399.
63. Dedysh, S.N., et al., Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 2000. 50(3): p. 955-969.
64. Ettwig, K.F., et al., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010. 464(7288): p. 543-548.
65. Haroon, M.F., et al., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013. 500(7464): p. 567-570.
66. Stopelli, E., et al., Carbon and methane cycling in arsenic-contaminated aquifers. Water research, 2021. 200: p. 117300.
67. Liu, T.-K., et al., Origin of methane in high-arsenic groundwater of Taiwan–Evidence from stable isotope analyses and radiocarbon dating. Journal of Asian Earth Sciences, 2009. 36(4-5): p. 364-370.
68. Killops, S.D. and V.J. Killops, Introduction to organic geochemistry. 2013: John Wiley & Sons.
69. Chen, Z., et al., Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. Science of the total environment, 2017. 574: p. 1684-1694.
70. Glodowska, M., et al., Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of hazardous materials, 2021. 407: p. 124398.
71. Gnanaprakasam, E.T., et al., Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh. MBio, 2017. 8(6): p. 10.1128/mbio. 01326-17.
72. Xiu, W., et al., Genome-resolved metagenomic analysis of groundwater: insights into arsenic mobilization in biogeochemical interaction networks. Environmental Science & Technology, 2022. 56(14): p. 10105-10119.
73. Xiu, W., et al., Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: potential importance of ammonium as an electron donor during arsenic mobilization. Environment international, 2020. 136: p. 105489.
74. Pracht, L.E., et al., Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization. Biogeosciences, 2018. 15(6): p. 1733-1747.
75. Zhang, D., et al., In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. Journal of hazardous materials, 2017. 321: p. 228-237.
76. Paul, D., et al., Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater. Bioresource technology, 2015. 188: p. 14-23.
77. Zheng, Y., et al., Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 2004. 19(2): p. 201-214.
78. Rowland, H., et al., Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Organic Geochemistry, 2006. 37(9): p. 1101-1114.
79. McArthur, J., et al., Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Applied geochemistry, 2004. 19(8): p. 1255-1293.
80. Charlet, L. and D.A. Polya, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements, 2006. 2(2): p. 91-96.
81. Richards, L.A., et al., Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models. Journal of Hydrology, 2018. 557: p. 321-334.
82. Mailloux, B.J., et al., Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proceedings of the National Academy of Sciences, 2013. 110(14): p. 5331-5335.
83. Magnone, D., et al., Biomarker-indicated extent of oxidation of plant-derived organic carbon (OC) in relation to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia. Scientific Reports, 2017. 7(1): p. 13093.
84. Anawar, H., et al., Mobilization of arsenic in groundwater of Bangladesh: evidence from an incubation study. Environmental Geochemistry and Health, 2006. 28: p. 553-565.
85. Glodowska, M., et al., Role of in situ natural organic matter in mobilizing As during microbial reduction of FeIII-mineral-bearing aquifer sediments from Hanoi (Vietnam). Environmental science & technology, 2020. 54(7): p. 4149-4159.
86. Richards, L.A., et al., Dissolved organic matter tracers reveal contrasting characteristics across high arsenic aquifers in Cambodia: A fluorescence spectroscopy study. Geoscience Frontiers, 2019. 10(5): p. 1653-1667.
87. Yu, K., et al., Anthropogenic influences on dissolved organic matter transport in high arsenic groundwater: Insights from stable carbon isotope analysis and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Science of the total environment, 2020. 708: p. 135162.
88. Qiao, W., et al., Molecular evidence of arsenic mobility linked to biodegradable organic matter. Environmental Science & Technology, 2020. 54(12): p. 7280-7290.
89. Huang, S.-b., et al., Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses. Science of the Total Environment, 2015. 529: p. 131-139.
90. Kulkarni, H.V., et al., Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility. Applied Geochemistry, 2017. 77: p. 194-205.
91. Kothawala, D.N., et al., Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Science of the Total Environment, 2012. 433: p. 238-246.
92. Helms, J.R., et al., Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and oceanography, 2008. 53(3): p. 955-969.
93. Giri, A., et al., Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environmental Science and Pollution Research, 2013. 20: p. 1281-1291.
94. Arts, D., M. Abdus Sabur, and H.A. Al-Abadleh, Surface interactions of aromatic organoarsenical compounds with hematite nanoparticles using ATR-FTIR: Kinetic studies. The Journal of Physical Chemistry A, 2013. 117(10): p. 2195-2204.
95. Sharma, P., J. Ofner, and A. Kappler, Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environmental science & technology, 2010. 44(12): p. 4479-4485.
96. Coble, P.G., et al., Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 1990. 348(6300): p. 432-435.
97. Chen, W., et al., Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology, 2003. 37(24): p. 5701-5710.
98. Larsen, L.G. and C. Woelfle‐Erskine, Groundwater is key to salmonid persistence and recruitment in intermittent Mediterranean‐climate streams. Water Resources Research, 2018. 54(11): p. 8909-8930.
99. Cory, R.M. and D.M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental science & technology, 2005. 39(21): p. 8142-8149.
100. Ghosh, D., J. Routh, and P. Bhadury, Characterization and microbial utilization of dissolved lipid organic fraction in arsenic impacted aquifers (India). Journal of Hydrology, 2015. 527: p. 221-233.
101. Huguet, A., et al., Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 2009. 40(6): p. 706-719.
102. Birdwell, J.E. and A.S. Engel, Variability in terrestrial and microbial contributions to dissolved organic matter fluorescence in the Edwards Aquifer, Central Texas. Journal of Cave and Karst Studies, 2009. 71(2): p. 144-156.
103. Parlanti, E., et al., Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic geochemistry, 2000. 31(12): p. 1765-1781.
104. Wolfe, A.P., et al., Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. Environmental Science & Technology, 2002. 36(15): p. 3217-3223.
105. Senesi, N., Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals: Part II. The fluorescence spectroscopy approach. Analytica Chimica Acta, 1990. 232: p. 77-106.
106. 柏貫中, 蘭陽平原地下水水溶氣(甲烷)厭氧氧化作用對含水層砷釋出之影響, in 環境工程研究所. 2022, 國立中央大學: 桃園縣. p. 122.
107. Nations, T.U. Transforming our world: the 2030 agenda for sustainable development, Resolution adopted by the General Assembly on 25 September 2015, A/RES/70/1 Seventieth session, General Assembly, United Nations. 2015; Available from: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication.
108. Luton, P.E., et al., The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 2002. 148(11): p. 3521-3530.
109. Hallam, S.J., et al., Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Applied and environmental microbiology, 2003. 69(9): p. 5483-5491.
110. Dick, G.J. and P. Lam, Omic approaches to microbial geochemistry. Elements, 2015. 11(6): p. 403-408.
111. McDonald, I.R. and J.C. Murrell, The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS microbiology letters, 1997. 156(2): p. 205-210.
112. Stookey, L.L., Ferrozine---a new spectrophotometric reagent for iron. Analytical chemistry, 1970. 42(7): p. 779-781.
113. 廖炳傑, 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響, in 環境工程研究所. 2014, 國立中央大學: 桃園縣. p. 112.
114. Lovley, D.R. and E.J. Phillips, Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 1987. 53(7): p. 1536-1540.
115. Uhrovčík, J., Strategy for determination of LOD and LOQ values–Some basic aspects. Talanta, 2014. 119: p. 178-180.
116. National Institute of Standards and Technology. Methane.
117. Stedmon, C.A. and R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 2008. 6(11): p. 572-579.
118. Bahram, M., et al., Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics: A Journal of the Chemometrics Society, 2006. 20(3‐4): p. 99-105.
119. Tyagi, S., Imaging intracellular RNA distribution and dynamics in living cells. natuRe methods, 2009. 6(5): p. 331-338.
120. 李杰穎, 季節效應對沼液沼渣中抗生素抗性基因豐度之影響, in 環境工程研究所. 2023, 國立中央大學: 桃園縣. p. 138.
121. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 2001. 25(4): p. 402-408.
122. Frank, J.A., et al., Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and environmental microbiology, 2008. 74(8): p. 2461-2470.
123. Muyzer, G., E.C. De Waal, and A. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 1993. 59(3): p. 695-700.
124. Großkopf, R., P.H. Janssen, and W. Liesack, Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and environmental microbiology, 1998. 64(3): p. 960-969.
125. Nunoura, T., et al., Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS microbiology ecology, 2008. 64(2): p. 240-247.
126. Luesken, F.A., et al., pmoA primers for detection of anaerobic methanotrophs. Applied and environmental microbiology, 2011. 77(11): p. 3877-3880.
127. Cummings, D.E., et al., Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Environmental Science & Technology, 1999. 33(5): p. 723-729.
128. Plummer, L.N., B.F. Jones, and A.H. Truesdell, WATEQF-a FORTRAN IV version of WATEQ: a computer program for calculating chemical equilibrium of natural waters. Vol. 76. 1976: Department of the Interior, Geological Survey, Water Resources Division.
129. Glynn, P.D. and J. Brown, Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. Reviews in Mineralogy and Geochemistry, 1996. 34(1): p. 377-438.
130. Parkhurst, D.L. and C. Appelo, User′s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. 1999, US Geological Survey.
131. Sracek, O., et al., Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 2004. 19(2): p. 169-180.
132. Williamson, W.M., et al., Groundwater biofilm dynamics grown in situ along a nutrient gradient. Groundwater, 2012. 50(5): p. 690-703.
133. Widdel, F. and F. Bak, Gram-negative mesophilic sulfate-reducing bacteria, in The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 1992, Springer. p. 3352-3378.
134. Tseng, W.-P., Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental health perspectives, 1977. 19: p. 109-119.
135. Fodor, P., Arsenic speciation in the environment, in Trace element speciation for environment, food and health. 2001, Royal Society of Chemistry Cambridge. p. 196-210.
136. Jiang, Z., et al., Arsenic mobilization and transformation by ammonium-generating bacteria isolated from high arsenic groundwater in Hetao Plain, China. International Journal of Environmental Research and Public Health, 2022. 19(15): p. 9606.
137. Tays, C., et al., Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Frontiers in Microbiology, 2018. 9: p. 389703.
138. He, Z., et al., Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Science of the total environment, 2018. 610: p. 759-768.
139. Richards, L.A., et al., High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia. Science of the total environment, 2017. 590: p. 540-553.
140. Héry, M., et al., Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology, 2010. 8(2): p. 155-168.
141. Tsukatani, Y., et al., Parallel electron donation pathways to cytochrome cz in the type I homodimeric photosynthetic reaction center complex of Chlorobium tepidum. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008. 1777(9): p. 1211-1217.
142. Stollenwerk, K.G., Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. Arsenic in ground water: Geochemistry and occurrence, 2003: p. 67-100.
143. Liu, W., et al., Indices of the dual roles of OM as electron donor and complexing compound involved in As and Fe mobilization in aquifer systems of the Datong Basin. Environmental pollution, 2020. 262: p. 114305.
144. Hu, Y., et al., Irrigation alters source-composition characteristics of groundwater dissolved organic matter in a large arid river basin, Northwestern China. Science of The Total Environment, 2021. 767: p. 144372.
145. 趙浩然, 發展三維螢光光譜技術追蹤污染場址污染來源之可行性. 2015.
146. Beatty, J.T., et al., An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proceedings of the National Academy of Sciences, 2005. 102(26): p. 9306-9310.
147. Stolz, J.F., et al., Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol., 2006. 60: p. 107-130.
148. Liu, S., et al., Newly Isolated Strain Methylocystis sp. L03 Oxidizes Methane with Nitrite as Terminal Electron Acceptor. Journal of Environmental Engineering, 2023. 149(12): p. 04023084.
149. Lovley, D.R., et al., Geobacter: the microbe electric′s physiology, ecology, and practical applications. Advances in microbial physiology, 2011. 59: p. 1-100.
150. Schwertmann, U., D. Schulze, and E. Murad, Identification of ferrihydrite in soils by dissolution kinetics, differential x‐ray diffraction, and Mössbauer spectroscopy. Soil Science Society of America Journal, 1982. 46(4): p. 869-875.
151. Aeppli, M., et al., Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environmental science & technology, 2019. 53(15): p. 8736-8746.
152. Yamamura, S. and S. Amachi, Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of bioscience and bioengineering, 2014. 118(1): p. 1-9.
153. Karapınar, N., Removal of heavy metal ions by ferrihydrite: an opportunity to the treatment of acid mine drainage. Water, Air, & Soil Pollution, 2016. 227(6): p. 193.
154. Ohno, T., et al., Molecular weight and humification index as predictors of adsorption for plant‐and manure‐derived dissolved organic matter to goethite. European Journal of Soil Science, 2007. 58(1): p. 125-132.
155. Li, P., et al., Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PloS one, 2015. 10(5): p. e0125844.
156. vanden Hoven, R.N. and J.M. Santini, Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004. 1656(2-3): p. 148-155.
157. Khanal, A., et al., Comparative Genome Analysis of Polar Mesorhizobium sp. PAMC28654 to Gain Insight into Tolerance to Salinity and Trace Element Stress. Microorganisms, 2024. 12(1): p. 120. |