參考文獻 |
蔡明儒. (2003). 利用脂肪酵素進行甘油三丁酸酯之水解反應.
曾瑋盈. (2007). 一新分離枯草菌所產生細菌素之部分特性鑑定.
常振鎧. (2016). 多功能乳酸菌粉產品之開發─ 子計畫二: 兼具免疫調節機能與抑制食因性病原菌之雙重功能的本土植物來源乳酸菌株之篩選. 計畫編號: CN10505; 計畫年度: 105.
陳佳慧. (2007). 乳酸菌抑菌功能之評估及發酵生產. 收入 計畫編號,: CN9606. 台南縣:嘉南藥理科技大學食品科技系. http://ir.cnu.edu.tw/handle/310902800/145
陳煜希. (2012). 食品加工業廢棄物及廢水之能源回收設計系統建構–以小型豆腐工廠為例.
郭惠真. (2020). 繩狀式接觸氧化系統處理綜合性工業廢水效能評估-以新北產業園區污水處理廠為例. https://hdl.handle.net/11296/w6h7yd
江靜雯, 郭孟欣, & 蔡國珍. (2000). Lactobacillus acidophilus LC1 所產細菌素在牛乳保鮮上之應用.
林景哲. (2013). 山上淨水場清水殘餘鋁改善之研究.
林昕可. (2019). 臺灣地區市售酵素產品中益生菌種類及發酵期間繁殖情況之探討.
劉英俊, 汪金追, & 劉裕國. (1996). 最新微生物應用工業. 中央圖書出版社.
唐宗豪. (2012). 芝麻蛋白水解物之抗氧化性探討.
楊雅嵐. (2012). 優酪乳的生理功能.
葉雅潔. (2014). 發展植物來源之益生菌-全榖乳酸菌之生產研究.
游惠宋, 黃志彬, & 鄭幸雄. (2005). 厭氧與兼氧微生物薄膜系統開發.
植村定治郎. (1957). 微生物生態論. 日本農芸化学会誌, 31(9), A93–A98. https://doi.org/10.1271/nogeikagaku1924.31.9_A93
Abreu-Jaureguí, C., Reynel-Ávila, H. E., & Bonilla-Petriciolet, A. (2023). Biodiesel production from wastewater scum of dairy industry: Lipid extraction studies and reaction routes. Fuel, 342, 127868. https://doi.org/10.1016/j.fuel.2023.127868
Abu Yazid, N., Barrena, R., Komilis, D., & Sánchez, A. (2017). Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability, 9(2), 224. https://doi.org/10.3390/su9020224
Amin, S. (2008). Characterization of heat cured and transglutaminase cross-linked whey protein-based edible films [Michigan State University]. https://doi.org/10.25335/M5XK84X8Z
Anagnostopoulou, C., Kontogiannopoulos, K. N., Gaspari, M., Morlino, M. S., Assimopoulou, A. N., & Kougias, P. G. (2022). Valorization of household food wastes to lactic acid production: A response surface methodology approach to optimize fermentation process. Chemosphere, 296, 133871. https://doi.org/10.1016/j.chemosphere.2022.133871
Asgharnejad, H., Khorshidi Nazloo, E., Madani Larijani, M., Hajinajaf, N., & Rashidi, H. (2021). Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water‐food‐environment nexus. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4779–4815.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1–2), 248–254.
Cao, S., Wang, S., Peng, Y., Wu, C., Du, R., Gong, L., & Ma, B. (2013). Achieving partial denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge. Bioresource Technology, 149, 570–574. https://doi.org/10.1016/j.biortech.2013.09.072
Carvalheira, A., Silva, J., & Teixeira, P. (2021). Acinetobacter spp. In food and drinking water – A review. Food Microbiology, 95, 103675. https://doi.org/10.1016/j.fm.2020.103675
Church, F. C., Porter, D. H., Catignani, G. L., & Swaisgood, H. E. (1985). An o-phthalaldehyde spectrophotometric assay for proteinases. Analytical Biochemistry, 146(2), 343–348. https://doi.org/10.1016/0003-2697(85)90549-4
Contesini, F. J., Melo, R. R. de, & Sato, H. H. (2018). An overview of Bacillus proteases: From production to application. Critical reviews in biotechnology, 38(3), 321–334.
Doores, S., Davidson, P., & Sofos, J. (2005). Organic acids. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 145, 91.
Dun, Y., Li, Y., Xu, J., Hu, Y., Zhang, C., Liang, Y., & Zhao, S. (2019). Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. International journal of biological macromolecules, 123, 420–426.
Dutta, S., Park, Y.-S., & Park, K. (2016). Proteolytic activity of thermophilic Bacillus licheniformis strain SF5-1 for the efficient bioconversion of pork waste to amino acid fertiliser. International Biodeterioration & Biodegradation, 111, 31–36.
Earl, A. M., Losick, R., & Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in microbiology, 16(6), 269–275.
Galbe, M., Wallberg, O., & Zacchi, G. (2011). Techno-Economic Aspects of Ethanol Production from Lignocellulosic Agricultural Crops and Residues. 收入 Comprehensive Biotechnology (頁 615–628). Elsevier. https://doi.org/10.1016/B978-0-08-088504-9.00298-1
Garrity, G. (2007). Bergey’s Manual® of Systematic Bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria (卷 2). Springer Science & Business Media.
Giri, S., Ryu, E., Sukumaran, V., & Park, S. C. (2019). Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial pathogenesis, 132, 66–72.
Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., & Liu, L. (2018). Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engineering, 50, 109–121. https://doi.org/10.1016/j.ymben.2018.05.006
Gudiña, E. J., & Teixeira, J. A. (2022). Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnology Advances, 60, 108013.
Gupta, A., Gupta, R., & Singh, R. L. (2017). Microbes and environment. Principles and applications of environmental biotechnology for a sustainable future, 43–84.
Hall, G. M., Barrera, C. H., & Shirai, K. (2020). Alternative methods for chitin and chitosan preparation, characterization, and application. 收入 Handbook of Chitin and Chitosan (頁 225–246). Elsevier. https://doi.org/10.1016/B978-0-12-817970-3.00008-0
Han, S.-J., Back, J. H., Yoon, M. Y., Shin, P. K., Cheong, C. S., Sung, M.-H., Hong, S.-P., Chung, I. Y., & Han, Y. S. (2003). Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie, 85(5), 501–510.
Hu, W., Tian, J., & Chen, L. (2019). Greenhouse gas emission by centralized wastewater treatment plants in Chinese industrial parks: Inventory and mitigation measures. Journal of Cleaner Production, 225, 883–897. https://doi.org/10.1016/j.jclepro.2019.03.311
Illing, N. (2002). Bacillus subtilis and its Closest Relatives: From Genes to Cells, eds AL Sonenshein, JA Hoch & R Losick. NATURE-LONDON-, 263–263.
Jeannot, M. A., & Cantwell, F. F. (1996). Solvent Microextraction into a Single Drop. Analytical chemistry (Washington), 68(13), 2236–2240. https://doi.org/10.1021/ac960042z
Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., & Li, M. (2013). Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresource Technology, 143, 525–530. https://doi.org/10.1016/j.biortech.2013.06.025
Jiang, M., Li, Q., Hu, S., He, P., Chen, Y., Cai, D., Wu, Y., & Chen, S. (2022). Enhanced aerobic denitrification performance with Bacillus licheniformis via secreting lipopeptide biosurfactant lichenysin. Chemical Engineering Journal, 434, 134686. https://doi.org/10.1016/j.cej.2022.134686
Jung, J., & Park, W. (2015). Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Applied microbiology and biotechnology, 99, 2533–2548.
Katarzyna Robak & Maria Balcerek. (2018). Review of Second-Generation Bioethanol Production from Residual Biomass. Food Technology and Biotechnology, 56(2). https://doi.org/10.17113/ftb.56.02.18.5428
Kok, R. G., van Thor, J. J., Nugteren‐Roodzant, I. M., Brouwer, M. B., Egmond, M. R., Nudel, C. B., Vosman, B., & Hellingwerf, K. J. (1995). Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Molecular microbiology, 15(5), 803–818.
Kumar, A., Gudiukaite, R., Gricajeva, A., Sadauskas, M., Malunavicius, V., Kamyab, H., Sharma, S., Sharma, T., & Pant, D. (2020). Microbial lipolytic enzymes–promising energy-efficient biocatalysts in bioremediation. Energy, 192, 116674.
Lakowitz, A., Godard, T., Biedendieck, R., & Krull, R. (2018). Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 126, 27–39.
Lemieux, R. U., & Spohr, U. (1994). Concept for enzyme specificity 1. Advances in carbohydrate chemistry and biochemistry, 50(1).
Longo, S., Katsou, E., Malamis, S., Frison, N., Renzi, D., & Fatone, F. (2015). Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresource Technology, 175, 436–444. https://doi.org/10.1016/j.biortech.2014.09.107
Mendieta, C. M., Felissia, F. E., Arismendy, A. M., Kruyeniski, J., & Area, M. C. (2021). Enzymatic hydrolysis and fermentation strategies for the biorefining of pine sawdust. BioResources, 16(4), 7474–7491. https://doi.org/10.15376/biores.16.4.7474-7491
Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65, 28–41. https://doi.org/10.1016/j.jclepro.2013.10.051
Muras, A., Romero, M., Mayer, C., & Otero, A. (2021). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology, 41(4), 609–627.
Nayyar, D., Nawaz, T., Noore, S., & Singh, A. P. (2021). Food processing wastewater treatment: Current practices and future challenges. Pollution Control Technologies: Current Status and Future Prospects, 177–208.
Nduwimana, J., & Guenet, L. (1995). Dorval. I.; Blayau, M.; Le Gall, JY; Le Treut, A. Ann. Biol. Clin, 53, 251.
Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2010). Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends in Analytical Chemistry, 29(7), 617–628. https://doi.org/10.1016/j.trac.2010.02.016
Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and Biotechnological Aspects of Microbial Proteases. Microbiology and Molecular Biology Reviews, 62(3), 597–635. https://doi.org/10.1128/MMBR.62.3.597-635.1998
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: Principles and applications. (No Title).
Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51(1part2), 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356
Sen, R., & Babu, K. S. (2005). Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Process Biochemistry, 40(7), 2531–2538.
Sharma, A., Sharma, T., Sharma, T., Sharma, S., & Kanwar, S. S. (2019). Role of Microbial Hydrolases in Bioremediation. 收入 A. Kumar & S. Sharma (編輯), Microbes and Enzymes in Soil Health and Bioremediation (卷 16, 頁 149–164). Springer Singapore. https://doi.org/10.1007/978-981-13-9117-0_7
Shon, H.-K., Tian, D., Kwon, D.-Y., Jin, C.-S., Lee, T.-J., & Chung, W.-J. (2002). Degradation of fat, oil, and grease (FOGs) by lipase-producing bacterium Pseudomonas sp. Strain D2D3. Journal of Microbiology and Biotechnology, 12(4), 583–591.
Son, J., Lim, S. H., Kimm, Y. J., Lim, H. J., Lee, J. Y., Jeong, S., Park, C., & Park, S. J. (2023). Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. Bioresource Technology, 128607.
Timmis, K. N. (2002). Pseudomonas putida: A cosmopolitan opportunist par excellence. Environmental Microbiology, 4(12), 779–781.
Tong, J., & Chen, Y. (2007). Enhanced Biological Phosphorus Removal Driven by Short-Chain Fatty Acids Produced from Waste Activated Sludge Alkaline Fermentation. Environmental Science & Technology, 41(20), 7126–7130. https://doi.org/10.1021/es071002n
Tzirita, M., Papanikolaou, S., Chatzifragkou, A., & Quilty, B. (2018). Waste fat biodegradation and biomodification by Yarrowia lipolytica and a bacterial consortium composed of Bacillus spp. And Pseudomonas putida. Engineering in Life Sciences, 18(12), 932–942.
Vea, E. B., Romeo, D., & Thomsen, M. (2018). Biowaste Valorisation in a Future Circular Bioeconomy. Procedia CIRP, 69, 591–596. https://doi.org/10.1016/j.procir.2017.11.062
Villalobos-Delgado, F. J., Bitonto, L. di, Reynel-Ávila, H. E., Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., & Pastore, C. (2021). Efficient and sustainable recovery of lipids from sewage sludge using ethyl esters of volatile fatty acids as sustainable extracting solvent. Fuel, 295, 120630. https://doi.org/10.1016/j.fuel.2021.120630
Weimer, A., Kohlstedt, M., Volke, D. C., Nikel, P. I., & Wittmann, C. (2020). Industrial biotechnology of Pseudomonas putida: Advances and prospects. Applied Microbiology and Biotechnology, 104, 7745–7766.
Xu, M., Yang, M., Sun, H., Gao, M., Wang, Q., & Wu, C. (2022). Bioconversion of biowaste into renewable energy and resources: A sustainable strategy. Environmental Research, 214, 113929. https://doi.org/10.1016/j.envres.2022.113929
Yan, J.-S. & 顏振升. (2022). 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=109326029
Zweers, J. C., Barák, I., Becher, D., Driessen, A. J., Hecker, M., Kontinen, V. P., Saller, M. J., Vavrová, L., & van Dijl, J. M. (2008). Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microbial cell factories, 7, 1–20. |