博碩士論文 110356019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:180 、訪客IP:3.138.137.199
姓名 郭惠鈴(KUO HUI LING)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 利用微生物酵素水解高油脂肉廢污泥之技術開發
(Technology Development for Hydrolysis of High-Fat Meat Waste Sludge using Microbial Enzymes)
相關論文
★ 利用巨大芽孢桿菌轉化魚廢和蔗渣為Alcalase之綠色循環模組★ 利用巨大芽孢桿菌將豆渣轉化為生物製造 蛋白質原料之綠色循環模組
★ 以一鍋式酵素串聯法將聚乳酸塑膠轉化為胺基酸★ 應用聚乳酸塑膠於聚乳酸-蘋果酸膠體共聚物之低溫永續製程
★ 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸★ 以酵素法萃煉微藻污泥之長鏈均質聚磷酸鹽
★ 利用一鍋式高溫蛋白酶串聯反應將豆渣升級再造為生物永續製造之蛋白質原料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來全球日漸走向綠色環保資源及永續發展為導向之新浪潮,由於人口增加、工業和經濟快速發展,所造成人類消費習慣改變、虛擬化….等等因素,造成天然能(資)源耗竭、氣候變遷、環境污染及廢棄物暴增的狀況,有關環境保護、天然能源再利用及降低溫室氣體排放,已儼然成為國際間最重要的議題。
水資源與氣候變遷的關係密不可分,氣候變遷會導致水循環紊亂,並進一步造成水資源的供需失衡,另一方面來自石化工業產生之化學物質亦是環境污染的最大來源,故珍惜水資源、降低水污染,提升廢污水處理的技術也就愈發重要。
本研究計畫以「廢水回收再利用」及「生物處理模組」為出發點,開發出「一鍋式」製程生物處理模組之技術。在實驗設計方法是以回收貢丸肉湯廢水 (Gongwan Broth Wastewater,GBW)投入微生物菌株配製成廢物培養基 (Microbial Waste Culture,MWC),再將微生物廢物培養基投入廢水處理廠,以處理廢水淨化水質後排放,以解決日趨加嚴的國家放流水標準。
經本計畫於實廠之模廠實驗結果:1.對於去除高油脂肉廢污泥之蛋白質平均水解效率分別是33.82 % (模廠)、57.28 % (實驗室)、胺基酸平均水解效率平均分別是11.15 % (模廠)、29.83 % (實驗室)及油脂去除效率平均 73.60 %。2. 計畫實施後112年3~8月對比計畫實施前111年3~8月之廢水量、藥品費及污泥產生量皆減少,降低處理成本:每噸廢水操作藥品費減少13.4 (元/噸)、每噸廢水污泥量減少1.51(公斤/噸) 及每月廢水排放量減少261 (噸/月)。3.利用回收的廢水當成底物,可替代商用昂貴的培養基,節省資源的浪費並開創新的能源,同時減少廢水排放量亦是減少環境的負荷。4.利用微生物酵素水解處理模式,改變污泥的性質,減少化學品使用量。5. 抑制與降低致病性、腐敗性微生物、寄生動植物之孳生,去除廠區腐臭味道,提昇環境品質。
本開發技術「一鍋式」製程生物處理模組,有效成功的利用微生物降解液體有機廢棄物為無毒增值產物,對於廢水的處理,僅以單一槽體即可操作,非常方便,且不產生二次污染,符合SDGs中的第6項-確保所有人都能享有水及衛生及其永續管理、第12項-確保永續的消費與生產模式,與五加二產業創新計畫中的循環經濟推動方案-能資源整合與產業共生,兼具環境永續與產業發展雙贏的目的相符合,本計畫實可為現今食品界廢水處理提供一種更佳的廢水處理方法。
摘要(英) In recent years, the world has gradually moved towards a new wave oriented towards green environmental resources and sustainable development. Due to the increase in population, rapid industrial and economic development, changes in human consumption habits, virtualization... and other factors, natural energy (resources) resources have Depletion, climate change, environmental pollution and the explosion of waste, environmental protection, natural energy reuse and reduction of greenhouse gas emissions have become the most important issues internationally.
Water resources are inextricably linked to climate change. Climate change will cause water circulation disorders and further cause an imbalance in the supply and demand of water resources. On the other hand, chemicals produced from the petrochemical industry are also the largest source of environmental pollution. Therefore, cherish water resources and reduce Water pollution has made it increasingly important to improve wastewater treatment technology.
This research plan takes "wastewater recycling" and "biological treatment module" as the starting point to develop the technology of "one-pot" process biological treatment module. The experimental design method is to recycle Gongwan Broth Wastewater (GBW) and put microbial strains into the waste culture medium (Microbial Waste Culture, MWC), and then put the microbial waste culture culture into the wastewater treatment plant to treat the wastewater purification. The water quality is then discharged to meet the increasingly stringent national water discharge standards.
The experimental results of this project in the actual mold factory: 1. For the removal of high-fat meat waste sludge, the average hydrolysis efficiency of protein is 33.82% (mold factory), 57.28% (laboratory), and the average hydrolysis efficiency of amino acids is respectively The averages are 11.15% (mold factory) and 29.83% (laboratory) respectively, and the average grease removal efficiency is 73.60%. 2. From March to August after the implementation of the plan, compared with March to August before the implementation of the plan, the amount of wastewater, pharmaceutical costs and sludge production were reduced, reducing treatment costs: the pharmaceutical cost per ton of wastewater operation was reduced by 13.4 ( dollar/ton), the amount of wastewater sludge per ton is reduced by 1.51 (kg/ton), and the monthly wastewater discharge is reduced by 261 (ton/month). 3. Using recycled wastewater as a substrate can replace expensive commercial culture media, saving resource waste and creating new energy sources. At the same time, it reduces wastewater discharge and reduces the load on the environment. 4. Use microbial enzyme hydrolysis treatment mode to change the properties of sludge and reduce the use of chemicals. 5. Inhibit and reduce the breeding of pathogenic and putrefactive microorganisms, parasitic animals and plants, remove the rancid smell in the factory area, and improve environmental quality.
The developed technology "one-pot" process biological treatment module effectively and successfully uses microorganisms to degrade liquid organic waste into non-toxic value-added products. For wastewater treatment, it can be operated with only a single tank, which is very convenient and does not produce Secondary pollution is in line with item 6 of the SDGs - ensuring that all people can enjoy water and sanitation and their sustainable management, item 12 - ensuring sustainable consumption and production patterns, and in line with the five plus two industry innovation plans. The circular economy promotion plan - energy resource integration and industrial symbiosis, is consistent with the win-win goals of environmental sustainability and industrial development. This plan can indeed provide a better wastewater treatment method for wastewater treatment in the current food industry.
關鍵字(中) ★ 微生物
★ 酵素水解
★ 發酵
★ 生物降解
★ 生物處理
關鍵字(英) ★ microorganisms
★ enzymatic hydrolysis
★ fermentation
★ biodegradation
★ biological treatment
論文目次 摘 要 i
Abstract iii
誌 謝 vi
目錄 vii
圖目錄 xi
表目錄 xiii
名詞縮寫說明 xiv
第一章、研究緣起與目的 1
1.1 研究緣起 1
1.2 研究目的 1
1.2.1 回收廢水再利用、降低處理成本及減少污染保護生態環境 2
1.2.2 去除廠區腐臭味改善環境衛生 2
第二章、文獻回顧 3
2.1 食品工業及其廢水處理現況 3
2.2 微生物-細菌 5
2.2.1 地衣芽孢桿菌 Bacillus licheniformis 6
2.2.2 枯草芽孢桿菌 Bacillus subtilis 7
2.2.3 惡臭假單胞菌 Pseudomonas putida 8
2.2.4 不動桿菌屬 Acinetobacter sp. 9
2.2.5 乳酸菌 (Lactic acid bacteria, LAB) 10
2.3 酵素 (酶)-生物催化劑 11
2.4 生物酵素水解 13
2.4.1 蛋白質水解 13
2.4.2 油脂水解 14
2.4.3 乳酸菌發酵作用 15
2.5 廢物再利用 17
2.6 「一鍋式」製程生物處理模組 17
第三章、研究材料與方法 20
3.1 實廠背景 20
3.1.1 實廠生產製程 20
3.1.2 實廠案例廢水處理廠操作處理現況 21
3.2 實驗材料 22
3.2.1 菌株來源與保存方式 22
3.2.2 培養基Nutrient broth (NB) 23
3.3 實驗設計 23
3.3.1 實驗設計架構及期程 23
3.3.2 「一鍋式」製程生物處理模組操作投菌流程 24
3.4 前置實驗 26
3.4.1 菌種篩選 26
3.4.2 MWC篩選及製作 26
3.5 模廠實驗 28
3.5.1 模廠設備 28
3.5.2 分階段投入菌種 29
3.5.3 採樣點及檢測項目 31
3.6 油脂檢測 33
3.6.1 試劑 34
3.6.2 分析步驟 34
3.7 定量蛋白質 35
3.7.1 試劑 35
3.7.2 分析步驟 35
3.7.3 蛋白質檢量線 38
3.8 定量胺基酸 38
3.8.1 試劑 39
3.8.2 分析步驟 39
3.8.3 胺基酸檢量線 42
3.9 PH檢測方法 42
第四章、結果與討論 44
4.1前置實驗結果 44
4.2 水質檢測結果 45
4.2.1 油脂檢測 45
4.2.2 蛋白質檢測 47
4.2.3 胺基酸檢測 48
4.3 酵素催化反應速率的影響因素 50
4.3.1 pH 50
4.3.2 溫度 50
4.3.3 水解與發酵時間 52
4.3.4 底物濃度 53
4.4 廢物再利用效益分析 54
4.4.1 廢水處理設施處理功能改善 54
4.4.2 降低處理成本 55
4.4.3 改善環境衛生 57
第五章、結論與建議 58
5.1 結論 58
5.2 建議 59
參考文獻 60
圖目錄
圖 1 生物處理方法分類圖 4
圖 2 藉顯微鏡能觀察微生物之大小 5
圖 3 微生物分類圖 6
圖 4 NB盤上的地衣芽孢桿菌菌落 7
圖 5 NB盤上的枯草芽孢桿菌菌落 8
圖 6 NB盤上的惡臭假單胞菌菌落 9
圖 7 NB盤上的不動桿菌屬菌落 10
圖 8 蛋白質水解化學反應 14
圖 9 脂肪水解化學反應 15
圖 10 「一鍋式」製程生物處理模組流程圖 19
圖 11 生產流程圖 20
圖 12 貢丸廠廢水處理流程圖 21
圖 13 貢丸肉湯廢水 (GBW)照片 21
圖 14 實驗設計架構流程圖 24
圖 15 「一鍋式」製程生物處理模組操作投入菌流程圖 25
圖 16 前置實驗-單、複菌種篩選測試方法 26
圖 17 魚內臟廢物加 GBW 培養嗜 PA 菌流程 27
圖 18 豆渣廢物培養BB菌流程 27
圖 19 實廠投菌- BB菌培養基投入廢水儲槽流程 27
圖 20 實廠投菌- PA 菌培養基投入油脂分離槽流程 28
圖 21 模廠設備照片 29
圖 22 模廠投入BB菌培養基照片 30
圖 23 模廠投入 PA 菌培養基照片 30
圖 24 投入菌種流程採樣時間點 32
圖 25 油脂萃取步驟流程 34
圖 26 蛋白質檢測流程圖 37
圖 27 蛋白質檢量線 38
圖 28 胺基酸檢測流程圖 41
圖 29 胺基酸檢量線 42
圖 30 酸鹼度測定儀 43
圖 31 前置實驗菌種測試照片 44
圖 32 前置實驗菌種測試照片 45
圖 33 油脂檢測數據統計圖 47
圖 34 蛋白質檢測數據統計圖 48
圖 35 胺基酸檢測數據統計圖 49
圖 36 PA菌於20 mL液態培養基中生長狀況照片 51
圖 37 實驗室前置實驗產製出生質油照片 52
圖 38 廢水緩衝槽槽內廢水狀況圖 54
圖 39 111年3~8月與112年3~8月廢水量、藥品費及污泥產生量統計圖 56

表目錄
表 1 酵素催化反應類型 12
表 2 乳酸菌發酵型式 16
表 3 BCRC菌株特性描述表 23
表 4 胺基酸定量試劑 39
表 5 4批次油脂秤重紀錄表 46
表 6 油脂去除率 46
表 7 蛋白質濃度紀錄表(模廠) 47
表 8 蛋白質濃度紀錄表(實驗室) 48
表 9 胺基酸濃度紀錄表(模廠) 49
表 10 胺基酸濃度紀錄表(實驗室) 49
表 11 投入 PA菌24及48小時後胺基酸濃度紀錄表(模廠) 53
表 12 投入 PA菌24及48小時後胺基酸濃度紀錄表(實驗室) 54
表 13 111年3~8月與112年3~8月廢水量、藥品費及污泥產生量對照表 56
參考文獻 蔡明儒. (2003). 利用脂肪酵素進行甘油三丁酸酯之水解反應.
曾瑋盈. (2007). 一新分離枯草菌所產生細菌素之部分特性鑑定.
常振鎧. (2016). 多功能乳酸菌粉產品之開發─ 子計畫二: 兼具免疫調節機能與抑制食因性病原菌之雙重功能的本土植物來源乳酸菌株之篩選. 計畫編號: CN10505; 計畫年度: 105.
陳佳慧. (2007). 乳酸菌抑菌功能之評估及發酵生產. 收入 計畫編號,: CN9606. 台南縣:嘉南藥理科技大學食品科技系. http://ir.cnu.edu.tw/handle/310902800/145
陳煜希. (2012). 食品加工業廢棄物及廢水之能源回收設計系統建構–以小型豆腐工廠為例.
郭惠真. (2020). 繩狀式接觸氧化系統處理綜合性工業廢水效能評估-以新北產業園區污水處理廠為例. https://hdl.handle.net/11296/w6h7yd
江靜雯, 郭孟欣, & 蔡國珍. (2000). Lactobacillus acidophilus LC1 所產細菌素在牛乳保鮮上之應用.
林景哲. (2013). 山上淨水場清水殘餘鋁改善之研究.
林昕可. (2019). 臺灣地區市售酵素產品中益生菌種類及發酵期間繁殖情況之探討.
劉英俊, 汪金追, & 劉裕國. (1996). 最新微生物應用工業. 中央圖書出版社.
唐宗豪. (2012). 芝麻蛋白水解物之抗氧化性探討.
楊雅嵐. (2012). 優酪乳的生理功能.
葉雅潔. (2014). 發展植物來源之益生菌-全榖乳酸菌之生產研究.
游惠宋, 黃志彬, & 鄭幸雄. (2005). 厭氧與兼氧微生物薄膜系統開發.
植村定治郎. (1957). 微生物生態論. 日本農芸化学会誌, 31(9), A93–A98. https://doi.org/10.1271/nogeikagaku1924.31.9_A93
Abreu-Jaureguí, C., Reynel-Ávila, H. E., & Bonilla-Petriciolet, A. (2023). Biodiesel production from wastewater scum of dairy industry: Lipid extraction studies and reaction routes. Fuel, 342, 127868. https://doi.org/10.1016/j.fuel.2023.127868
Abu Yazid, N., Barrena, R., Komilis, D., & Sánchez, A. (2017). Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability, 9(2), 224. https://doi.org/10.3390/su9020224
Amin, S. (2008). Characterization of heat cured and transglutaminase cross-linked whey protein-based edible films [Michigan State University]. https://doi.org/10.25335/M5XK84X8Z
Anagnostopoulou, C., Kontogiannopoulos, K. N., Gaspari, M., Morlino, M. S., Assimopoulou, A. N., & Kougias, P. G. (2022). Valorization of household food wastes to lactic acid production: A response surface methodology approach to optimize fermentation process. Chemosphere, 296, 133871. https://doi.org/10.1016/j.chemosphere.2022.133871
Asgharnejad, H., Khorshidi Nazloo, E., Madani Larijani, M., Hajinajaf, N., & Rashidi, H. (2021). Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water‐food‐environment nexus. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4779–4815.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1–2), 248–254.
Cao, S., Wang, S., Peng, Y., Wu, C., Du, R., Gong, L., & Ma, B. (2013). Achieving partial denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge. Bioresource Technology, 149, 570–574. https://doi.org/10.1016/j.biortech.2013.09.072
Carvalheira, A., Silva, J., & Teixeira, P. (2021). Acinetobacter spp. In food and drinking water – A review. Food Microbiology, 95, 103675. https://doi.org/10.1016/j.fm.2020.103675
Church, F. C., Porter, D. H., Catignani, G. L., & Swaisgood, H. E. (1985). An o-phthalaldehyde spectrophotometric assay for proteinases. Analytical Biochemistry, 146(2), 343–348. https://doi.org/10.1016/0003-2697(85)90549-4
Contesini, F. J., Melo, R. R. de, & Sato, H. H. (2018). An overview of Bacillus proteases: From production to application. Critical reviews in biotechnology, 38(3), 321–334.
Doores, S., Davidson, P., & Sofos, J. (2005). Organic acids. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 145, 91.
Dun, Y., Li, Y., Xu, J., Hu, Y., Zhang, C., Liang, Y., & Zhao, S. (2019). Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. International journal of biological macromolecules, 123, 420–426.
Dutta, S., Park, Y.-S., & Park, K. (2016). Proteolytic activity of thermophilic Bacillus licheniformis strain SF5-1 for the efficient bioconversion of pork waste to amino acid fertiliser. International Biodeterioration & Biodegradation, 111, 31–36.
Earl, A. M., Losick, R., & Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in microbiology, 16(6), 269–275.
Galbe, M., Wallberg, O., & Zacchi, G. (2011). Techno-Economic Aspects of Ethanol Production from Lignocellulosic Agricultural Crops and Residues. 收入 Comprehensive Biotechnology (頁 615–628). Elsevier. https://doi.org/10.1016/B978-0-08-088504-9.00298-1
Garrity, G. (2007). Bergey’s Manual® of Systematic Bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria (卷 2). Springer Science & Business Media.
Giri, S., Ryu, E., Sukumaran, V., & Park, S. C. (2019). Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial pathogenesis, 132, 66–72.
Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., & Liu, L. (2018). Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engineering, 50, 109–121. https://doi.org/10.1016/j.ymben.2018.05.006
Gudiña, E. J., & Teixeira, J. A. (2022). Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnology Advances, 60, 108013.
Gupta, A., Gupta, R., & Singh, R. L. (2017). Microbes and environment. Principles and applications of environmental biotechnology for a sustainable future, 43–84.
Hall, G. M., Barrera, C. H., & Shirai, K. (2020). Alternative methods for chitin and chitosan preparation, characterization, and application. 收入 Handbook of Chitin and Chitosan (頁 225–246). Elsevier. https://doi.org/10.1016/B978-0-12-817970-3.00008-0
Han, S.-J., Back, J. H., Yoon, M. Y., Shin, P. K., Cheong, C. S., Sung, M.-H., Hong, S.-P., Chung, I. Y., & Han, Y. S. (2003). Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie, 85(5), 501–510.
Hu, W., Tian, J., & Chen, L. (2019). Greenhouse gas emission by centralized wastewater treatment plants in Chinese industrial parks: Inventory and mitigation measures. Journal of Cleaner Production, 225, 883–897. https://doi.org/10.1016/j.jclepro.2019.03.311
Illing, N. (2002). Bacillus subtilis and its Closest Relatives: From Genes to Cells, eds AL Sonenshein, JA Hoch & R Losick. NATURE-LONDON-, 263–263.
Jeannot, M. A., & Cantwell, F. F. (1996). Solvent Microextraction into a Single Drop. Analytical chemistry (Washington), 68(13), 2236–2240. https://doi.org/10.1021/ac960042z
Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., & Li, M. (2013). Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresource Technology, 143, 525–530. https://doi.org/10.1016/j.biortech.2013.06.025
Jiang, M., Li, Q., Hu, S., He, P., Chen, Y., Cai, D., Wu, Y., & Chen, S. (2022). Enhanced aerobic denitrification performance with Bacillus licheniformis via secreting lipopeptide biosurfactant lichenysin. Chemical Engineering Journal, 434, 134686. https://doi.org/10.1016/j.cej.2022.134686
Jung, J., & Park, W. (2015). Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Applied microbiology and biotechnology, 99, 2533–2548.
Katarzyna Robak & Maria Balcerek. (2018). Review of Second-Generation Bioethanol Production from Residual Biomass. Food Technology and Biotechnology, 56(2). https://doi.org/10.17113/ftb.56.02.18.5428
Kok, R. G., van Thor, J. J., Nugteren‐Roodzant, I. M., Brouwer, M. B., Egmond, M. R., Nudel, C. B., Vosman, B., & Hellingwerf, K. J. (1995). Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Molecular microbiology, 15(5), 803–818.
Kumar, A., Gudiukaite, R., Gricajeva, A., Sadauskas, M., Malunavicius, V., Kamyab, H., Sharma, S., Sharma, T., & Pant, D. (2020). Microbial lipolytic enzymes–promising energy-efficient biocatalysts in bioremediation. Energy, 192, 116674.
Lakowitz, A., Godard, T., Biedendieck, R., & Krull, R. (2018). Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 126, 27–39.
Lemieux, R. U., & Spohr, U. (1994). Concept for enzyme specificity 1. Advances in carbohydrate chemistry and biochemistry, 50(1).
Longo, S., Katsou, E., Malamis, S., Frison, N., Renzi, D., & Fatone, F. (2015). Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresource Technology, 175, 436–444. https://doi.org/10.1016/j.biortech.2014.09.107
Mendieta, C. M., Felissia, F. E., Arismendy, A. M., Kruyeniski, J., & Area, M. C. (2021). Enzymatic hydrolysis and fermentation strategies for the biorefining of pine sawdust. BioResources, 16(4), 7474–7491. https://doi.org/10.15376/biores.16.4.7474-7491
Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65, 28–41. https://doi.org/10.1016/j.jclepro.2013.10.051
Muras, A., Romero, M., Mayer, C., & Otero, A. (2021). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology, 41(4), 609–627.
Nayyar, D., Nawaz, T., Noore, S., & Singh, A. P. (2021). Food processing wastewater treatment: Current practices and future challenges. Pollution Control Technologies: Current Status and Future Prospects, 177–208.
Nduwimana, J., & Guenet, L. (1995). Dorval. I.; Blayau, M.; Le Gall, JY; Le Treut, A. Ann. Biol. Clin, 53, 251.
Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2010). Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends in Analytical Chemistry, 29(7), 617–628. https://doi.org/10.1016/j.trac.2010.02.016
Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and Biotechnological Aspects of Microbial Proteases. Microbiology and Molecular Biology Reviews, 62(3), 597–635. https://doi.org/10.1128/MMBR.62.3.597-635.1998
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: Principles and applications. (No Title).
Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51(1part2), 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356
Sen, R., & Babu, K. S. (2005). Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Process Biochemistry, 40(7), 2531–2538.
Sharma, A., Sharma, T., Sharma, T., Sharma, S., & Kanwar, S. S. (2019). Role of Microbial Hydrolases in Bioremediation. 收入 A. Kumar & S. Sharma (編輯), Microbes and Enzymes in Soil Health and Bioremediation (卷 16, 頁 149–164). Springer Singapore. https://doi.org/10.1007/978-981-13-9117-0_7
Shon, H.-K., Tian, D., Kwon, D.-Y., Jin, C.-S., Lee, T.-J., & Chung, W.-J. (2002). Degradation of fat, oil, and grease (FOGs) by lipase-producing bacterium Pseudomonas sp. Strain D2D3. Journal of Microbiology and Biotechnology, 12(4), 583–591.
Son, J., Lim, S. H., Kimm, Y. J., Lim, H. J., Lee, J. Y., Jeong, S., Park, C., & Park, S. J. (2023). Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. Bioresource Technology, 128607.
Timmis, K. N. (2002). Pseudomonas putida: A cosmopolitan opportunist par excellence. Environmental Microbiology, 4(12), 779–781.
Tong, J., & Chen, Y. (2007). Enhanced Biological Phosphorus Removal Driven by Short-Chain Fatty Acids Produced from Waste Activated Sludge Alkaline Fermentation. Environmental Science & Technology, 41(20), 7126–7130. https://doi.org/10.1021/es071002n
Tzirita, M., Papanikolaou, S., Chatzifragkou, A., & Quilty, B. (2018). Waste fat biodegradation and biomodification by Yarrowia lipolytica and a bacterial consortium composed of Bacillus spp. And Pseudomonas putida. Engineering in Life Sciences, 18(12), 932–942.
Vea, E. B., Romeo, D., & Thomsen, M. (2018). Biowaste Valorisation in a Future Circular Bioeconomy. Procedia CIRP, 69, 591–596. https://doi.org/10.1016/j.procir.2017.11.062
Villalobos-Delgado, F. J., Bitonto, L. di, Reynel-Ávila, H. E., Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., & Pastore, C. (2021). Efficient and sustainable recovery of lipids from sewage sludge using ethyl esters of volatile fatty acids as sustainable extracting solvent. Fuel, 295, 120630. https://doi.org/10.1016/j.fuel.2021.120630
Weimer, A., Kohlstedt, M., Volke, D. C., Nikel, P. I., & Wittmann, C. (2020). Industrial biotechnology of Pseudomonas putida: Advances and prospects. Applied Microbiology and Biotechnology, 104, 7745–7766.
Xu, M., Yang, M., Sun, H., Gao, M., Wang, Q., & Wu, C. (2022). Bioconversion of biowaste into renewable energy and resources: A sustainable strategy. Environmental Research, 214, 113929. https://doi.org/10.1016/j.envres.2022.113929
Yan, J.-S. & 顏振升. (2022). 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=109326029
Zweers, J. C., Barák, I., Becher, D., Driessen, A. J., Hecker, M., Kontinen, V. P., Saller, M. J., Vavrová, L., & van Dijl, J. M. (2008). Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microbial cell factories, 7, 1–20.
指導教授 王柏翔(Wang Pohsiang) 審核日期 2024-3-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明