參考文獻 |
Achmad, F., Yamane, K., Quan, S., & Kokugan, T. (2009). Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chemical Engineering Journal, 151 (1), 342–350.
Afrin, R., Chen, C., Sarpa, D., Sithamparam, M., Yi, R., Giri, C., Mamajanov, I., Cleaves II, H. J., Chandru, K., & Jia, T. Z. (2022). The effects of dehydration temperature and monomer chirality on primitive polyester synthesis and microdroplet assembly. Macromolecular Chemistry and Physics, 223 (23), 2200235.
Ahmad, A., Banat, F., & Taher, H. (2020). A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environmental Technology & Innovation, 20, 101138.
Alves de Oliveira, R., Komesu, A., Vaz Rossell, C. E., & Maciel Filho, R. (2018). Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochemical Engineering Journal, 133, 219–239.
Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333–366.
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8 (9), 3494–3511.
Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385–391.
Chen, C., Yi, R., Igisu, M., Sakaguchi, C., Afrin, R., Potiszil, C., Kunihiro, T., Kobayashi, K., Nakamura, E., Ueno, Y., Antunes, A., Wang, A., Chandru, K., Hao, J., & Jia, T. Z. (2023). Spectroscopic and biophysical methods to determine differential salt-uptake by primitive membraneless polyester microdroplets. Small Methods, 7 (12), 2300119.
Chi, Z., Wang, Z. P., Wang, G. Y., Khan, I., & Chi, Z. M. (2016). Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol, 36 (1), 99–107.
Datta, R., & Henry, M. (2006). Lactic acid: Recent advances in products, processes and technologies — a review. Journal of Chemical Technology & Biotechnology, 81 (7), 1119–1129.
de França, J. O. C., da Silva Valadares, D., Paiva, M. F., Dias, S. C. L., & Dias, J. A. (2022). Polymers Based on PLA from Synthesis Using D,L-lactic acid (or racemic lactide) and some biomedical applications: A short review. Polymers (Basel), 14 (12).
Dechy-Cabaret, O., Martin-Vaca, B., & Bourissou, D. (2004). Controlled ring-opening polymerization of lactide and glycolide. Chemical Reviews, 104 (12), 6147–6176.
Dopico-García, S., Ares-Pernas, A., Otero-Canabal, J., Castro-López, M., López-Vilariño, J. M., González-Rodríguez, V., & Abad-López, M. J. (2013). Insight into industrial PLA aging process by complementary use of rheology, HPLC, and MALDI. Polymers for Advanced Technologies, 24 (8), 723–731.
Dorgan, J., Lehermeier, H., & Mang, M. (2000). Thermal and rheological properties of commercial-grade poly (lactic acid)s. Journal of Polymers and the Environment, 8, 1–9.
Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D., & Lang, H. (1974). Proteinase K from Tritirachium album Limber. European Journal of Biochemistry, 47 (1), 91–97.
Forsythe, J. G., Yu, S.-S., Mamajanov, I., Grover, M. A., Krishnamurthy, R., Fernández, F. M., & Hud, N. V. (2015). Ester-mediated amide bond formation driven by wet–dry cycles: A possible path to polypeptides on the prebiotic earth. Angewandte Chemie International Edition, 54 (34), 9871–9875.
Ginjupalli, K., Shavi, G. V., Averineni, R. K., Bhat, M., Udupa, N., & Nagaraja Upadhya, P. (2017). Poly (α-hydroxy acid) based polymers: A review on material and degradation aspects. Polymer Degradation and Stability, 144, 520–535.
Harris, J., & Marles-Wright, J. (2017). Macromolecular Protein Complexes: Structure and Function (Vol. 83).
Huang, X., Xu, L., Qian, H., Wang, X., & Tao, Z. (2022). Polymalic acid for translational nanomedicine. J Nanobiotechnology, 20 (1), 295.
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9 (5), 552–571.
Jia, T. Z., Bapat, N. V., Verma, A., Mamajanov, I., Cleaves, H. J., II, & Chandru, K. (2021). Incorporation of basic α-Hydroxy acid residues into primitive polyester microdroplets for RNA segregation. Biomacromolecules, 22 (4), 1484–1493.
Jia, T. Z., Chandru, K., Hongo, Y., Afrin, R., Usui, T., Myojo, K., & Cleaves, H. J. (2019). Membraneless polyester microdroplets as primordial compartments at the origins of life. Proceedings of the National Academy of Sciences, 116 (32), 15830–15835.
Jitrapakdee, S., St Maurice, M., Rayment, I., Cleland, W. W., Wallace, J. C., & Attwood, P. V. (2008). Structure, mechanism and regulation of pyruvate carboxylase. Biochem J, 413 (3), 369–387.
Kajiyama, T., Kobayashi, H., Taguchi, T., Kataoka, K., & Tanaka, J. (2004). Improved synthesis with high yield and increased molecular weight of poly (α,β-malic acid) by direct polycondensation. Biomacromolecules, 5 (1), 169–174.
Kane, D. A. (2014). Lactate oxidation at the mitochondria: A lactate-malate-aspartate shuttle at work [Perspective]. Frontiers in Neuroscience, 8.
Kawai, F., Nakadai, K., Nishioka, E., Nakajima, H., Ohara, H., Masaki, K., & Iefuji, H. (2011). Different enantioselectivity of two types of poly (lactic acid) depolymerases toward poly (l-lactic acid) and poly (d-lactic acid). Polymer Degradation and Stability, 96 (7), 1342–1348.
Lee, B.-S., Fujita, M., Khazenzon, N. M., Wawrowsky, K. A., Wachsmann-Hogiu, S., Farkas, D. L., Black, K. L., Ljubimova, J. Y., & Holler, E. (2006). Polycefin, a new prototype of a multifunctional nanoconjugate based on poly (β-l-malic acid) for drug delivery. Bioconjugate Chemistry, 17 (2), 317–326.
Liu, J., Li, J., Shin, H. D., Du, G., Chen, J., & Liu, L. (2017). Biological production of L-malate: Recent advances and future prospects. World J Microbiol Biotechnol, 34 (1), 6.
Ljubimova, J. Y., Fujita, M., Ljubimov, A. V., Torchilin, V. P., Black, K. L., & Holler, E. (2008). Poly (malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine (Lond), 3 (2), 247–265.
Loyer, P., & Cammas-Marion, S. (2014). Natural and synthetic poly (malic acid)-based derivates: A family of versatile biopolymers for the design of drug nanocarriers. J Drug Target, 22 (7), 556–575.
Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59 (1), 145–152.
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101 (22), 8493–8501.
Mehmood, A., Raina, N., Phakeenuya, V., Wonganu, B., & Cheenkachorn, K. (2023). The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Materials Today: Proceedings, 72, 3049–3055.
Minárik, P., Tomaskova, N., Kollarova, M., & Antalik, M. (2002). Malate dehydrogenases-structure and function. General physiology and biophysics, 21 (3), 257–266.
Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46.
Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M., & Ezawa, T. (2004). Quantification of polyphosphate: Different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Anal Biochem, 328 (2), 139–146.
Oyama, H. T., Tanishima, D., & Maekawa, S. (2016). Poly (malic acid-co-L-lactide) as a superb degradation accelerator for Poly (l-lactic acid) at physiological conditions. Polymer Degradation and Stability, 134, 265–271.
Ramírez-Herrera, C., Flores-Vela, A., Torres-Huerta, A., Domínguez-Crespo, M. A., & Palma Ramírez, D. (2018). PLA degradation pathway obtained from direct polycondensation of 2-hydroxypropanoic acid using different chain extenders. Journal of Materials Science, 53.
Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R. E., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers, 13 (11).
Rossi, V., Cleeve-Edwards, N., Lundquist, L., Schenker, U., Dubois, C., Humbert, S., & Jolliet, O. (2015). Life cycle assessment of end-of-life options for two biodegradable packaging materials: Sound application of the European waste hierarchy. Journal of Cleaner Production, 86, 132–145.
Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26 (3), 246–265.
Suo, A., Qian, J., Yao, Y., & Zhang, W. (2010). Galactosylated poly (ethylene glycol)-b-poly (l-lactide-co-β-malic acid) block copolymer micelles for targeted drug delivery: preparation and in vitro characterization. International Journal of Nanomedicine, 5, 1029–1038.
Sweeney, P. J., & Walker, J. M. (1993). Proteinase K (EC 3.4.21.14). In M. M. Burrell (Ed.), Enzymes of Molecular Biology (p. 305–311). Humana Press.
Tarbuk, a., Čorak, i., Đorđević, d., Draczyński, z. (2022). Accelerated hydrolysis of PLA fibers at low temperature. 21st world textile conference autex 2022.
Teixeira, S., Eblagon, K. M., Miranda, F., R. Pereira, M. F., & Figueiredo, J. L. (2021). Towards controlled degradation of poly (lactic) acid in technical applications.
Vaidya, A. N., Pandey, R. A., Mudliar, S., Kumar, M. S., Chakrabarti, T., & Devotta, S. (2005). Production and recovery of lactic acid for polylactide—An overview. Critical Reviews in Environmental Science and Technology, 35 (5), 429–467.
Wadsö, L., & Karlsson, O. J. (2013). Alkaline hydrolysis of polymers with ester groups studied by isothermal calorimetry. Polymer Degradation and Stability, 98 (1), 73–78.
Wang, J., Ni, C., Zhang, Y., Zhang, M., Li, W., Yao, B., & Zhang, L. (2014). Preparation and pH controlled release of polyelectrolyte complex of poly (l-malic acid-co-d,l-lactic acid) and chitosan. Colloids and Surfaces B: Biointerfaces, 115, 275–279.
Wang, L., Neoh, K.-G., Kang, E.-T., Shuter, B., & Wang, S.-C. (2010). Biodegradable magnetic-fluorescent magnetite/poly (dl-lactic acid-co-α,β-malic acid) composite nanoparticles for stem cell labeling. Biomaterials, 31 (13), 3502–3511.
Wang, P.-H., Fujishima, K., Berhanu, S., Kuruma, Y., Jia, T. Z., Khusnutdinova, A. N., Yakunin, A. F., & McGlynn, S. E. (2020). A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis. ACS Synthetic Biology, 9 (1), 36–42.
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry [Review]. Frontiers in Bioengineering and Biotechnology, 9.
Ward, D. E., van Der Weijden, C. C., van Der Merwe, M. J., Westerhoff, H. V., Claiborne, A., & Snoep, J. L. (2000). Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: A new, secreted metabolite serving as a temporary redox sink. J Bacteriol, 182 (11), 3239–3246.
Xu, X.-J., Sy, J. C., & Prasad Shastri, V. (2006). Towards developing surface eroding poly (α-hydroxy acids). Biomaterials, 27 (15), 3021–3030.
Yin, Q., Yin, L., Wang, H., & Cheng, J. (2015). Synthesis and biomedical applications of functional poly (α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides. Accounts of Chemical Research, 48 (7), 1777–1787.
Yu, N. Y. C., Schindeler, A., Little, D. G., & Ruys, A. J. (2010). Biodegradable poly (α-hydroxy acid) polymer scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93B (1), 285–295.
Zaaba, N. F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 60 (9), 2061–2075.
Zhang, Y., Ni, C., Shi, G., Wang, J., Zhang, M., & Li, W. (2015). The polyion complex nano-prodrug of doxorubicin (DOX) with poly (lactic acid-co-malic acid)-block-polyethylene glycol: Preparation and drug controlled release. Medicinal Chemistry Research, 24 (3), 1189–1195.
|