摘要(英) |
Selective catalytic reduction (SCR) is a more efficient method for NOx emission control than the selective non-catalytic reduction (SNCR) method commonly used in Taiwanese waste incineration plants. This study simulated SCR treatment of NOx emissions in a laboratory setting, using NOx concentration data from the SNCR inlet of the Beitou Waste Incineration Plant in Taipei, the Houli Resource Recovery Plant in Taichung, and the Chiayi Waste Incineration Plant. The study investigated denitrification efficiency and associated cost fluctuations.
The catalyst used in this study was an extruded V2O5/TiO2 vanadium-titanium catalyst. The experimental temperature was controlled within the range of 160°C to 210°C. In the first 500 seconds after the experiment commenced, a rapid decrease in NOx concentration was observed at the outlet of the experimental system. After 900 seconds, the outlet NOx concentration stabilized, reaching a minimum of approximately 30 ppm. An inverse relationship was observed between experimental temperature and outlet NOx concentration, with higher temperatures leading to lower concentrations. At a reaction temperature of 210°C, all three plants achieved their highest denitrification efficiency, with values of 83%, 79%, and 79%, respectively.
If each plant were to implement SCR based on their current conditions to enhance denitrification efficiency, the estimated additional construction and operation costs per ton of waste over the next 20 years would be: NT$29.4/ton for the Beitou Plant, NT$99.93/ton for the Chiayi Plant, and NT$34.75/ton for the Houli Plant. The annual total costs for each plant would be: NT$19.3 million for the Beitou Plant, NT$11.42 million for the Houli Plant, and NT$10.94 million for the Chiayi Plant.
Keywords: nitrogen oxides, selective catalytic reduction, waste incineration plant, vanadium-titanium catalyst |
參考文獻 |
[1] 環興科技股份有限公司,“ 臺中市后里資源回收廠改建營運移轉案-可行性評估報告書-修正二稿”,(2021)
[2] 美商傑明工程顧問股份有限公司台灣分公司, 「臺中市文山焚化廠興建營運移轉案」“可行性評估報告書”,(2020)
[3] 劉永與吳國忠, “NOx的生成機理”, 油氣田地面工程, 第26卷第4期, (2007), p.32–33。
[4] 劉鎧仲, “以觸媒還原一氧化氮之研究:氧濃度及促進劑對銅觸媒之效能影響”, 國立中山大學, (2001), p.3–4。
[5] 周志儒與李建利, “應用統計方法於現場高壓蒸氣鍋源效率且降低氮氧化物排放之製程最適化研究”, 國立高雄第一科技大學, (2004), p.3–5。
[6] 翁瑞裕, “選擇性觸媒還原脫硝法”, 工業污染防治, No. 57, (1996), p.140–155。
[7] A. Kokkinos, “NOx Emissions Controls Gas and Oil-Fired Boilers”, ABBC-E Services, Inc, (1994).
[8] 環保署 TEDS 9.0 (2013)。網址 https://teds.epa.gov.tw。
[9] R. Casiday and R. Frey, “Acid Rain”, Washington University, U.S.A. (1998).
[10] T. J. Blasing, “Recent greenhouse gas concentrations”, Carbon Dioxide Information Analysis Center, (2016). Available at:http://cdiac.ess-dive.lbl.gov/pns/current_ghg.html.
[11] 吳以壯,“以選擇性觸媒還原技術同時去除NO及VOCs之效率測試研究”,國立交通大學 (2009).
[12] 林克衛, “柴油車選擇性還原觸媒系統 ( SCR ) 之介紹與系統開發”, 車輛研究測試中心, (2013), p.9–15.
[13] W. Addy Majewski, “Selective Catalytic Reduction”, Diesel Net, (2005). Available at https://www.dieselnet.com/tech/cat_scr.php.
[14] 溫桓正, “ 空氣預熱器技術對機組運維優劣性探討”,台灣電力股份有限公司,(2022).
[15] Jin Xiong, Yuran Li, Yuting Lin, and Tingyu Zhu, “Formation of sulfur trioxide during the SCR of NO with NH3 over a V2O5/TiO2 catalyst”, RSC Adv., (2019).
[16] Mona Lisa M. Oliveira, “Experimental Study and Numerical Simulation of NOx Selective Catalytic Reduction Applied to Diesel Vehicles”, UNIVERSIDADE ESTADUAL DO CEARÁ, Brazil. (2009).
[17] H. Bosch and F. Janssen, “De NOx Catalyst Review”, Catal. Today, (1988), p.369-532.
[18] 賴正昕, 劉國棟, 黃自立 (1996), “選擇性觸媒還原法排煙脫硝系統控制實務”, 工業污染防治, 第57 期, p.110-126.
[19] H.S. Gandhi, G.W. Graham, and R.W. McCabe, “Automotive Exhaust Catalysis”, J. Catal., (2003) p. 433-442.
[20] J. Pérez-Ramírez, J. M. García-Cortés, M. J. Illán-Gómez, F. Kapteijn, J. A. Moulijn and C. Salinas-Martínez de Lecea, “Reduction of NO by Propene over, Pt, Pd and Rh-based ZSM-5 under Lean-burn Conditions”, React. Kinet. Catal. Lett., (2000) p.385-392.
[21] H. Chen, X. Wang and W. Sachtler, “Reduction of NOx over Various Fe/zeolite Catalysts”, Appl. Catal. A: Gen., (2000) p.159-168.
[22] 李庭瑜,“錳基觸媒負載於不同形狀CeSiOx擔體應用於低溫SCR之研究”,國立中興大學 (2020),p.39-45.
[23] Lee T.Y. and Bai H.L., “Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: a review”, AIMS Environmental Science, (2016), p.261-289.
[24] 秦坦賢 , 施明源,“選擇性觸媒脫硝系統在鍋爐煙氣低溫環境之應用展望”,(2021),p.9
[25] 光が丘清掃工場,“ 光が丘清掃工場令和4年度環境測定結果”,(2024).
[26] H. S. Fogler, “Elements of Chemical Reaction Engineering”, 3rd ed., Prentice-Hall Inc., New Jersey, USA., (1999).
[27] Tang X., Hao J., Yi H., and Li J., “Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts”, Catalysis Today, (2007), p.406-411.
[28] 台灣電力股份有限公司台中發電廠,“ 中1機脫硝觸媒集塊110組”, (2023), https://web.pcc.gov.tw/tps/QueryTender/query/searchTenderDetail?pkPmsMain=NzAzNzE0NTg=.
[29] 台灣電力股份有限公司大林發電廠,“113年度大二機脫硝設備蜂巢式觸媒集塊財物採購一批” ,(2024), 網址:https://web.pcc.gov.tw/tps/QueryTender/query/searchTenderDetail?pkPmsMain=NzA1NjI5NTE=.
[30] Hou Y., Cai G., Huang Z., Han X., and Guo S., Effect of HCl on V2O5/AC catalyst for NO reduction by NH3 at low temperatures. Chemical Engineering Journal, (2014). 247: p. 59-65.
[31] 台灣電力股份有限公司林口發電廠,“ 113年脫硝設備蜂巢式觸媒集塊財物採購(含林一、三機觸媒安裝及大修工作)”,(2023),網址:https://web.pcc.gov.tw/tps/QueryTender/query/searchTenderDetail?pkPmsMain=NzA0MTUxNjI=
[32] Rongrong Gui ., Qinghua Yan ., Tianshan Xue ., Yanshan Gao ., Yuran Li ., Tingyu Zhu ., Qiang Wang ., The promoting/inhibiting effect of water vapor on the selective catalytic reduction of NOx. Journal of Hazardous Materials (2022).
[33] 劉鎮溢,“電廠排煙脫硝SCR選擇性觸媒還原脫硝技術”,(2000),p4-5.
[34] 台灣電力股份有限公司大潭發電廠,“ 5,100,000公斤氨水壹批”,(2023),
https://web.pcc.gov.tw/tps/atm/AtmAwardWithoutSso/QueryAtmAwardDetail?pkAtmMain=NzA0Mjk1OTM=
[35] 台灣電力股份有限公司大林發電廠,“ 112年SCR區大一、二機年度檢修暨#2機大修工作”,(2022),網址https://web.pcc.gov.tw/tps/atm/AtmAwardWithoutSso/QueryAtmAwardDetail?pkAtmMain=NzAxMjEyNTk=
[36] 嘉義市政府環境保護局,“嘉義市垃圾焚化廠增設選擇性非觸媒脫硝(SNCR)設備工程計畫”,(2020)
[37] 臺北市政府,“110年度氮氧化物去除系統(SNCR)整修更新”, (2020)
[38] 臺中市政府環境保護局,“ 臺中市后里焚化廠選擇性非觸媒還原設備(SNCR)改善統包工程”,(2020)
[39] L. Sloss, “Nitrogen Oxides Control Technology Fact Book”, Noyes Data Corp, (1992), p.60–119.
[40] 劉蘭萍, “氧化物控制技術與應用實務”, 化工技術, 第七卷第六期, (1999), p.228–239。
[41] 施佳昀, “以蜂巢型鐵氧磁體觸媒催化NH3-SCR去除NO之研究”, 國立高雄科技大學,(2018).
[42] 環境部,“廢棄物焚化爐空氣污染物排放標準”, 環境部,(2006),網址https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020010
[43] 吳淑媚,“選擇性觸媒脫硝還原反應注氨量探討”,國立中興大學,(2007).
[44] 柯韋辰,“煙氣脫氮SCR法之數值模擬技術”,國立臺灣海洋大學,(2017).
[45] 方冠榮,“功能性介孔氧化物在SCR脫硝觸媒應用之研究”,國立成功大學,(2018).
[46] 曾志富、李宗諭、洪嘉圻、林國璋、郭麗雯、白勳綾,“低溫SCR脫硝觸媒研製與模廠測試”,經濟部工業局,(2019)
[47] 林民倫,“煙氣脫硝觸媒之製備與性能測試”,國立勤益科技大學,(2016).
[48] Bora Ye, Bora Jeong, Myeung-jin Lee, Tae Hyeong Kim, Sam-Sik Park, Jaeil Jung, Seunghyun Lee & Hong-Dae Kim, “Recent trends in vanadium‑based SCR catalysts for NOx reduction in industrial applications: stationary sources”, Nano Convergence, (2022). |