參考文獻 |
1.
網路資料:https://e-info.org.tw/node/237546
2.
網路資料: https://esg.businesstoday.com.tw/article/category/180692/post/202303270014/%E5%8F%B0%E7%81%A3%E7%AC%AC3%E5%BA%A7%E9%9B%A2%E5%B2%B8%E9%A2%A8%E5%A0%B4%E5%AE%8C%E5%B7%A5%EF%BC%81%E6%B5%B7%E8%83%BD47%E5%BA%A7%E9%A2%A8%E6%A9%9F%E8%BF%8E%E5%95%86%E8%BD%89%EF%BC%8C%E5%8F%B0%E7%81%A3%E9%A2%A8%E9%9B%BB%E5%BB%BA%E7%BD%AE%E7%82%BA%E4%BB%80%E9%BA%BC%E5%BE%88%E5%9B%B0%E9%9B%A3%EF%BC%9F
3.
"Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines," IEC 61400-3, International Electrotechnical Commission, 2009.
4.
M.Yang, P.Martinez-Vazquez, and C. Baniotopoulos, "Wind Turbine Tower Collapse Cases: A Historical Overview."Proceedings of the Institution of Civil Engineers-Structures and Buildings,2019.
5.
BS 7910, " Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, " British Standard Institution, 2013.
6.
網路資料:風力發電單一服務窗口。2023年6月,取自https://www.twtpo.org.tw/offshore_show.aspx?id=963.
7.
B.C. O′Kelly and M.Arshad, “Offshore Wind Turbine Foundations: Analysis and Design,” in Offshore Wind Farms, C. Ng and L. Ran, Eds., Woodhead Publishing, pp. 589-610, 2016.
95
8.
網路資料:維基百科。2023年6月,取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0.
9.
“Wind Turbines - Part 1: Design Requirements,” IEC 61400-1, International Electrotechnical Commission, 2019.
10.
prEN 1993-1-9:2022: Eurocode 3: Design of Steel Structures, Enquiry Draft 2022.
11.
A. J. Sadowski, et al. ′′8-MW Wind Turbine Tower Computational Shell Buckling Benchmark. Part 1: An International ‘Round-Robin’Exercise.′′ Engineering Failure Analysis,Vol. 148, Article No.107124 ,2023
12.
K.-S. Lee, and H. J. Bang. "A Study on the Prediction of Lateral Buckling Load for Wind Turbine Tower Structures," International Journal of Precision Engineering and Manufacturing 13, Vol. 13, pp. 1829–1836, 2012
13.
API 579-1/ASME FFS-1, "Fitness-For-Service," American Petroleum Institute and ASME, 2016.
14.
G. Shen and G. Glinka, "Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate," Theoretical and Applied Fracture Mechanics, Vol. 15, pp. 247-255, 1991.
15.
G. Glinka, “Development of Weight Functions and Computer Integration Procedures for Calculating Stress Intensity Factors around Cracks Subjected to Complex Stress Fields,” Analytical Services & Materials, Inc. 107 Research Drive, Hampton, VA 23666, USA, 1996.
16.
X. J. Zheng, A. kiciak and G. Glinka, ′′Weight Function and Stress Intensity Factors for Internal Surface Semi-Elliptical Crack in Thick-Walled Cylinder,′′ Engineering Fracture Mechanics, Vol. 58, No. 3, pp. 207-221, 1997.
17.
ASME, “Rules for Inservice Inspection of Nuclear Power Plant Components,” ASME BPVC Section XI, 2010.
96
18.
Q. A. Mai, J. D. Sørensen, and P. Rigo, “Updating Failure Probability of a Welded Joint in Offshore Wind Turbine Substructures,” The 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, Busan, South Korea, June 2016.
19.
B. Nageswara Rao, A.R. Acharya, ′′Failure Assessment on M300 Grade Maraging Steel Cylindrical Pressure Vessels with an Internal Surface Crack,′′ Pressure Vessels and Piping, Vol. 75, pp. 537-543, 1998.
20.
DNV GL, and Garrad Hassan & Partners Ltd, “Bladed User Manual Version 4.8,” 2016.
21.
陳俞凱、陳景林, "以IEC 61400-1 對彰濱風場數據進行風況評估",台灣風能協會學術研討會暨NEPII離岸風力及海洋能源主軸中心成果發表會,國立台灣大學,台灣,2015年12月8日.
22.
DNV GL, and Garrad Hassan & Partners Ltd, “Bladed Theory Manual Version 4.8,” 2016.
23.
網路資料: Particle Motion in Deep Water。2023年6月,取自https://www.scubageek.com/articles/wwwparticle.html.
24.
T. Gentils, L. Wang, and A. Kolios, “Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm,” Applied Energy, Vol. 199, pp. 187-204, 2017.
25.
唐榕崧, "複合材料葉片振動行為之研究" ,國立交通大學工學院專班精密與自動化工程學程,碩士論文,2009.
26.
王晟桓、陳世雄, "基於葉素動量理論之水平軸風力發電機葉片空氣動力分析程序",臺灣風能學術研討會,G6-09,國立澎湖科技大學,台灣,2010年12月17日.
27.
M. B. Fuchs, "The Unit-Load Method," in Structures and Their Analysis: Springer, M. B. Fuchs, Eds., Springer Cham, pp. 85-110, 2016.
97
28.
網路資料:維基百科。2023年6月,取自https://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg.
29.
A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921.
30.
G. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957.
31.
M. Chiesa, “Linking Advanced Fracture Models to Structural Analysis,” The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Thermodynamics and Fluiddynamics, 2001.
32.
Z. Zhuang,Z. Liu, B. CHeng, “Fundamental Linear Elastic Fracture Mechanics,” in Extended Finite Element Method, Z. Zhuang, Z. Liu, B. Cheng, J. Liao, Eds., Academic Press, pp. 13-31, 2014.
33.
G. R. Liu, N. Nourbakhshnia, Y.W. Zhang, “ A Novel Singular ES-FEM Method for Simulating Singular Stress Fields Near the Crack Tips for Linear Fracture Problems, ” Engineering Fracture Mechanics, Vol. 78, No. 6, pp. 863-876, 2011.
34.
A. O. Ayhan, A. C. Kaya, “Fracture Analysis of Cracks in Orthotropic Materials Using ANSYS,” Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Vol. 5: Marine, Microturbines and Small Turbomachinery, Oil and Gas Applications, Structures and Dynamics, Parts A and B. Barcelona, Spain. May 8–11, pp. 873-881, ASME, 2006.
35.
S. R. Lampman, “ASM Handbook: Vol. 19, Fatigue and Fracture,” ASM International, 1996.
36.
P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Law, ” Journal of Basic Engineering, Vol. 85, pp. 528-534, 1963.
98
37.
Chang, P. C., Yang, R. Y., & Lai, C. M. “Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan.” Energies, 2015, no. 3: 1685-1700.
38.
E. Ghafoori & M. Motavalli, “A Retrofit Theory to Prevent Fatigue Crack Initiation in Aging Riveted Bridges Using Carbon Fiber-Reinforced Polymer Materials,” Polymers (Basel), Vol. 8, No. 8, 2016.
39.
J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009
40.
J. Jonkman and W. Musial, “Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-5000-48191, 2010.
41.
DNV GL, “Loads and Site Conditions for Wind Turbines,” DNVGL-ST-0437, 2016.
42.
J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009
43.
J. Jonkman and W. Musial, “Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-5000-48191, 2010.
99
44.
U. F. Gamiz, E. Zulueta, A. Boyano, J. A. R. Hernanz, and J. M. L. Guede, “Microtab Design and Implementation on a 5MW Wind Turbine,” Applied Sciences, Vol. 7, No. 6, pp. 536-553, 2017。
45.
S. Aasen, A. M. Page, K. S. Skau, and T. A Nygaard, “Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine,” Wind Energy Science Discussions, Vol. 2, pp. 361-376, 2016.
46.
洪浚傑,"離岸風力機負載分析與結構應力分析",國立中央大學碩士論文,2019。
47.
劉岳群,"離岸風力機塔架在正常發電下之疲勞分析",國立中央大學碩士論文,2020。
48.
施忠賢,"彰工II塔架結構計算書",施忠賢結構計師事務所,2010。
49.
P. C.Chang, R. Y. Yang, C. M. Lai, "Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan. "Energies,Vol. 8, No. 1685-1700, 2015.
50.
網路資料:泛科學 https://pansci.asia/archives/86303
51.
網路資料:中央氣象局颱風資料庫https://rdc28.cwa.gov.tw/TDB/public/warning_typhoon_list/
52.
張景鐘,"台灣地區風速頻譜之探討",中華民國風工程學會電子期刊,第5期,pp. 54-80,2013。
53.
崔海平,"離岸風電場址風況、海洋參數及負載分析技術研究",金屬工業研究發展中心研究報告,台灣,2018。
54.
周聖勳, "離岸風力機塔架之開機負載及失效評估分析", 國立中央大學碩士論文,2021。
55.
P. Amirafshari, F. Brenan, A. Kolios, “A Fracture Mechanics Framework for Optimising Design and Inspection of Offshore Wind Turbine Support Structures Against Fatigue Failure,” Wind Energy Science, Vol. 6, No. 3, pp. 677-699, 2021.
100
56.
AWS, “Structural Welding Code—Steel,” AWS D1.1/D1.1M, 2006.
57.
ASME, “Rules for Construction of Pressure Vessels,” ASME BPVC Section VIII, 2017.
58.
N. Stavridou, E. Efthymiou, and C. C. Baniotopoulos, “Welded Connections of Wind Turbine Towers under Fatigue Loading: Finite Element Analysis and Comparative Study,” American Journal of Engineering and Applied Sciences, Vol. 8, No. 4, pp. 489-503, 2015.
59.
馬尼,"平板與薄管中半橢圓形裂縫疲勞成長的數值模擬",國立虎尾科技大學飛機工程系航空與電子科技碩士班,碩士論文,2019。
60.
Vaziri, A., and H. E. Estekanchi,"Buckling of Cracked Cylindrical thin shells under combined internal pressure and axial compression."Thin-Walled Structures," Vol 44, 2006.02.
61.
IIW-1823-07 2008 “Recommendations for fatigue design of welded joints and components,”International Institute of Welding, Paris, France.
62.
K. Dai, C. Sheng, Z. Zhao, Z. Yi, A. Camara, G. Bitsuamlak, "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds. "Wind and Structures,Vol. 25, No. 79-100. 2017. |