博碩士論文 111323027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.15.14.33
姓名 林裕烜(Yu-Hsuan Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 離岸風力機塔架在颱風風況下之 挫曲與裂縫失效安全評估
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 本研究討論不同颱風風況與極限風況對於塔架所造成挫曲的影響,以及不同尺寸的裂縫失效評估。以NREL 5MW OWT風力機為分析模型,風況方面考量IEC61400-3之DLC6.1極限風況、中央氣象局所提供的的颱風資料,以及單一葉片節距角失控之狀況。分析方法整合了GH-Bladed、ANSYS及MATLAB軟體。
塔架的挫曲及裂縫失效之評估主要以Z軸應力大小作判斷。在不同高風速情況下,情況最大Z軸應力皆發生在塔架迎風面處。IEC61400-3規範的DLC6.1極限風況之Z軸應力明顯小於台灣颱風產生的值。規範中提及風況在沒有紊流強度的情況下可將原風速乘以1.4倍做分析設定,但本研究顯示後者的Z軸應力比前者大很多。在相同風速下,紊流度11%風況的Z軸應力大於紊流強度0%者海況方面,由於本研究的風速很大導致??,??對塔架應力的影響幾乎看不出來。
塔架屬於薄管結構,在高風速及機艙與葉片的高軸向負荷下,可能造成挫曲。本研究使用台灣颱風風況進行ANSYS非線性挫曲有限元素分析,模擬得到的挫曲係數遠大於臨界挫曲值1,顯示在正常待機的颱風風況下是不會發生挫曲。
在塔架裂縫方面,以S355鋼銲接結構的Haigh Diagram進行分析,在風速80 m/s時雖然有部分點落在線外,但作用次數需到達106次,故判定風力機使用期間不會因為颱風有疲勞裂縫起始。接著使用BS7910規範中的option 1方法進行裂縫失效評估。在30.2公尺處的塔架迎風面,當輪毂風速70 m/s,裂縫深度20 mm,裂縫短長軸比(a/c)0.2時,會失效;當輪毂風速80 m/s (紊流強度11%)及裂縫深度20 mm時,在所有a/c比值皆造成失效。而塔架外側在80 m/s (紊流強度11%)及裂縫深度20 mm時,在所有a/c比值皆時會發生失效。若有單一葉片節距角失控,則在風速30 m/s時,塔架就會失效。
摘要(英) This study investigates the effects of different typhoon wind conditions and extreme wind conditions on the buckling of tower structures, as well as the assessment of crack failures of different sizes. The NREL 5MW offshore wind turbine is used as the analysis model. Wind conditions considered include IEC 61400-3 DLC6.1 extreme wind conditions, typhoon data provided by the Central Weather Bureau, and scenarios of individual blade pitch angle loss of control. The analysis integrates GH-Bladed, ANSYS, and MATLAB software.
Evaluation of tower buckling and crack failures primarily focuses on the magnitude of Z-axis stress. Under various high wind speed conditions, maximum Z-axis stress occurs on the windward side of the tower structure. Z-axis stresses under IEC 61400-3 DLC6.1 conditions are significantly lower than those generated by Taiwan′s typhoons. The standard suggests analyzing wind conditions by multiplying the original wind speed by 1.4 in the absence of turbulence intensity, but this study demonstrates that the Z-axis stress in the latter case is much higher than in the former. At the same wind speed, the Z-axis stress under 11% turbulence intensity exceeds that under 0% turbulence intensity. Regarding sea conditions, the effects of significant wave height (??) and peak period (??) on tower stress are negligible due to the high wind speeds analyzed in this study.
Tower structures are characterized as thin-walled tubes, susceptible to buckling under high wind speeds and high axial loads from the nacelle and blades. Nonlinear buckling finite element analysis using Taiwan′s typhoon wind conditions in ANSYS shows buckling coefficients significantly greater than the critical buckling value of 1, indicating no buckling under normal typhoon conditions.
iii
Regarding tower crack assessment, Haigh Diagram analysis for welded S355 steel structures shows that although some points fall outside the line at a wind speed of 80 m/s, the number of cycles required for fatigue crack initiation is on the order of 106 cycles, indicating no fatigue crack initiation during the operational life of the wind turbine under typhoon conditions. Subsequent crack failure assessment using Option 1 of BS7910 standard indicates that at the windward side of the tower at 30.2 meters, a crack depth of 20 mm results in failure when the hub wind speed is 70 m/s. At 80 m/s hub wind speed (with 11% turbulence intensity) and a crack depth of 20 mm, failure occurs for all a/c ratios. Similarly, on the outer side of the tower at 80 m/s hub wind speed (with 11% turbulence intensity) and a crack depth of 20 mm, failure occurs for all a/c ratios. In the event of a single blade pitch angle loss of control, the tower fails at a wind speed of 30 m/s.
關鍵字(中) ★ 離岸風力機
★ 颱風
★ 半橢圓裂縫
★ 塔架失效評估
★ 挫曲
關鍵字(英) ★ offshore wind turbine
★ tower
★ buckling
★ failure assessment
論文目次 摘要 I
ABSTRACT II
目錄 V
符號說明 IX
圖目錄 XV
表目錄 XIX
第一章、緒論 1
1-1研究背景與動機 1
1-2研究目的 4
1-3離岸風力機簡介 5
1-3-1風力機原理 5
1-3-2 離岸風力機機組構造 6
1-4文獻回顧 8
1-4-1 離岸風力機之設計規定 8
1-4-2挫曲係數 8
1-4-3 應力強度因子計算 9
1-4-4 裂縫結構之失效評估分析 9
第二章、理論說明 11
2-1 軟體說明 11
2-1-1 GH-Bladed 11
2-1-2 MATLAB 11
2-1-3 ANSYS 12
2-2 風力機外部條件 12
2-2-1 風況條件 14
2-2-1-1 風速分布 14
2-2-1-2 十分鐘平均風速 14
2-2-1-3 風切係數 15
2-2-1-4 紊流強度 16
2-2-1-5 待機極端風況 16
2-2-2 海況條件 17
2-2-2-1 波浪 17
2-2-2-2 洋流 19
2-2-2-3 潮汐水位 21
2-3 離岸風力機負載 23
2-3-1 慣性與重力負載 23
2-3-2 氣動力負載 24
2-3-2-1 葉片 24
2-3-2-2 塔架 28
2-3-3 水動力負載 28
2-3-4 負載歷程輸出 29
2-4 單位負載法 29
2-5 薄管挫曲 30
2-6 疲勞裂縫成長 30
2-6-1 破壞力學 30
2-6-1-1線彈性破壞力學(Linear Elastic Fracture Mechanics, LEFM) 31
2-6-2 疲勞裂縫成長曲線 34
2-6-3 疲勞裂縫起始 36
第三章、研究方法 39
3-1 離岸風力機型號與規格 40
3-2 建構NREL 5MW OWT模型 44
3-2-1 GH-Bladed建構NREL 5MW OWT模型 44
3-2-2 ANSYS Workbench建構NREL 5MW OWT模型 46
3-2-2-1 塔架模型設定 46
3-2-2-2 塔架法蘭模型 47
3-2-2-3 網格設定 48
3-3 模態分析 50
3-4 NREL 5MW OWT設計工況 50
3-5 GH-BLADED塔架負載轉換 54
3-6 GH-BLADED分析時之資料取樣頻率 56
3-7 塔架裂縫之失效評估方法 58
3-7-1 失效評估曲線 58
3-7-2 待評估點 61
3-7-2-1 裂縫參考應力 62
3-7-2-2 材料性質與破壞韌性 63
3-8 疲勞裂縫成長分析 64
3-8-1 裂縫位置、形狀及尺寸 64
3-8-2 應力強度因子計算 68
3-8-2-1 權重函數法 68
3-8-2-2 單位負載法 70
第四章、結果與討論 72
4-1台灣颱風風況與極限風況比較 72
4-2颱風與極端風況下風力機挫曲 76
4-2-1薄管挫曲驗證 76
4-2-2極限風況與颱風風況挫曲分析 79
4-3疲勞裂縫起始 80
4-4有裂縫塔架之失效分析 83
4-4-1裂縫位置選定 83
4-4-2塔架裂縫失效評估 84
4-4-3颱風與正常發電時的裂縫失效比較 89
第五章、結論與未來研究方向 92
5-1 結論 92
5-2 未來展望 93
參考資料 94
參考文獻 1.
網路資料:https://e-info.org.tw/node/237546
2.
網路資料: https://esg.businesstoday.com.tw/article/category/180692/post/202303270014/%E5%8F%B0%E7%81%A3%E7%AC%AC3%E5%BA%A7%E9%9B%A2%E5%B2%B8%E9%A2%A8%E5%A0%B4%E5%AE%8C%E5%B7%A5%EF%BC%81%E6%B5%B7%E8%83%BD47%E5%BA%A7%E9%A2%A8%E6%A9%9F%E8%BF%8E%E5%95%86%E8%BD%89%EF%BC%8C%E5%8F%B0%E7%81%A3%E9%A2%A8%E9%9B%BB%E5%BB%BA%E7%BD%AE%E7%82%BA%E4%BB%80%E9%BA%BC%E5%BE%88%E5%9B%B0%E9%9B%A3%EF%BC%9F
3.
"Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines," IEC 61400-3, International Electrotechnical Commission, 2009.
4.
M.Yang, P.Martinez-Vazquez, and C. Baniotopoulos, "Wind Turbine Tower Collapse Cases: A Historical Overview."Proceedings of the Institution of Civil Engineers-Structures and Buildings,2019.
5.
BS 7910, " Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, " British Standard Institution, 2013.
6.
網路資料:風力發電單一服務窗口。2023年6月,取自https://www.twtpo.org.tw/offshore_show.aspx?id=963.
7.
B.C. O′Kelly and M.Arshad, “Offshore Wind Turbine Foundations: Analysis and Design,” in Offshore Wind Farms, C. Ng and L. Ran, Eds., Woodhead Publishing, pp. 589-610, 2016.
95
8.
網路資料:維基百科。2023年6月,取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0.
9.
“Wind Turbines - Part 1: Design Requirements,” IEC 61400-1, International Electrotechnical Commission, 2019.
10.
prEN 1993-1-9:2022: Eurocode 3: Design of Steel Structures, Enquiry Draft 2022.
11.
A. J. Sadowski, et al. ′′8-MW Wind Turbine Tower Computational Shell Buckling Benchmark. Part 1: An International ‘Round-Robin’Exercise.′′ Engineering Failure Analysis,Vol. 148, Article No.107124 ,2023
12.
K.-S. Lee, and H. J. Bang. "A Study on the Prediction of Lateral Buckling Load for Wind Turbine Tower Structures," International Journal of Precision Engineering and Manufacturing 13, Vol. 13, pp. 1829–1836, 2012
13.
API 579-1/ASME FFS-1, "Fitness-For-Service," American Petroleum Institute and ASME, 2016.
14.
G. Shen and G. Glinka, "Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate," Theoretical and Applied Fracture Mechanics, Vol. 15, pp. 247-255, 1991.
15.
G. Glinka, “Development of Weight Functions and Computer Integration Procedures for Calculating Stress Intensity Factors around Cracks Subjected to Complex Stress Fields,” Analytical Services & Materials, Inc. 107 Research Drive, Hampton, VA 23666, USA, 1996.
16.
X. J. Zheng, A. kiciak and G. Glinka, ′′Weight Function and Stress Intensity Factors for Internal Surface Semi-Elliptical Crack in Thick-Walled Cylinder,′′ Engineering Fracture Mechanics, Vol. 58, No. 3, pp. 207-221, 1997.
17.
ASME, “Rules for Inservice Inspection of Nuclear Power Plant Components,” ASME BPVC Section XI, 2010.
96
18.
Q. A. Mai, J. D. Sørensen, and P. Rigo, “Updating Failure Probability of a Welded Joint in Offshore Wind Turbine Substructures,” The 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, Busan, South Korea, June 2016.
19.
B. Nageswara Rao, A.R. Acharya, ′′Failure Assessment on M300 Grade Maraging Steel Cylindrical Pressure Vessels with an Internal Surface Crack,′′ Pressure Vessels and Piping, Vol. 75, pp. 537-543, 1998.
20.
DNV GL, and Garrad Hassan & Partners Ltd, “Bladed User Manual Version 4.8,” 2016.
21.
陳俞凱、陳景林, "以IEC 61400-1 對彰濱風場數據進行風況評估",台灣風能協會學術研討會暨NEPII離岸風力及海洋能源主軸中心成果發表會,國立台灣大學,台灣,2015年12月8日.
22.
DNV GL, and Garrad Hassan & Partners Ltd, “Bladed Theory Manual Version 4.8,” 2016.
23.
網路資料: Particle Motion in Deep Water。2023年6月,取自https://www.scubageek.com/articles/wwwparticle.html.
24.
T. Gentils, L. Wang, and A. Kolios, “Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm,” Applied Energy, Vol. 199, pp. 187-204, 2017.
25.
唐榕崧, "複合材料葉片振動行為之研究" ,國立交通大學工學院專班精密與自動化工程學程,碩士論文,2009.
26.
王晟桓、陳世雄, "基於葉素動量理論之水平軸風力發電機葉片空氣動力分析程序",臺灣風能學術研討會,G6-09,國立澎湖科技大學,台灣,2010年12月17日.
27.
M. B. Fuchs, "The Unit-Load Method," in Structures and Their Analysis: Springer, M. B. Fuchs, Eds., Springer Cham, pp. 85-110, 2016.
97
28.
網路資料:維基百科。2023年6月,取自https://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg.
29.
A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921.
30.
G. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957.
31.
M. Chiesa, “Linking Advanced Fracture Models to Structural Analysis,” The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Thermodynamics and Fluiddynamics, 2001.
32.
Z. Zhuang,Z. Liu, B. CHeng, “Fundamental Linear Elastic Fracture Mechanics,” in Extended Finite Element Method, Z. Zhuang, Z. Liu, B. Cheng, J. Liao, Eds., Academic Press, pp. 13-31, 2014.
33.
G. R. Liu, N. Nourbakhshnia, Y.W. Zhang, “ A Novel Singular ES-FEM Method for Simulating Singular Stress Fields Near the Crack Tips for Linear Fracture Problems, ” Engineering Fracture Mechanics, Vol. 78, No. 6, pp. 863-876, 2011.
34.
A. O. Ayhan, A. C. Kaya, “Fracture Analysis of Cracks in Orthotropic Materials Using ANSYS,” Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Vol. 5: Marine, Microturbines and Small Turbomachinery, Oil and Gas Applications, Structures and Dynamics, Parts A and B. Barcelona, Spain. May 8–11, pp. 873-881, ASME, 2006.
35.
S. R. Lampman, “ASM Handbook: Vol. 19, Fatigue and Fracture,” ASM International, 1996.
36.
P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Law, ” Journal of Basic Engineering, Vol. 85, pp. 528-534, 1963.
98
37.
Chang, P. C., Yang, R. Y., & Lai, C. M. “Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan.” Energies, 2015, no. 3: 1685-1700.
38.
E. Ghafoori & M. Motavalli, “A Retrofit Theory to Prevent Fatigue Crack Initiation in Aging Riveted Bridges Using Carbon Fiber-Reinforced Polymer Materials,” Polymers (Basel), Vol. 8, No. 8, 2016.
39.
J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009
40.
J. Jonkman and W. Musial, “Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-5000-48191, 2010.
41.
DNV GL, “Loads and Site Conditions for Wind Turbines,” DNVGL-ST-0437, 2016.
42.
J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009
43.
J. Jonkman and W. Musial, “Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-5000-48191, 2010.
99
44.
U. F. Gamiz, E. Zulueta, A. Boyano, J. A. R. Hernanz, and J. M. L. Guede, “Microtab Design and Implementation on a 5MW Wind Turbine,” Applied Sciences, Vol. 7, No. 6, pp. 536-553, 2017。
45.
S. Aasen, A. M. Page, K. S. Skau, and T. A Nygaard, “Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine,” Wind Energy Science Discussions, Vol. 2, pp. 361-376, 2016.
46.
洪浚傑,"離岸風力機負載分析與結構應力分析",國立中央大學碩士論文,2019。
47.
劉岳群,"離岸風力機塔架在正常發電下之疲勞分析",國立中央大學碩士論文,2020。
48.
施忠賢,"彰工II塔架結構計算書",施忠賢結構計師事務所,2010。
49.
P. C.Chang, R. Y. Yang, C. M. Lai, "Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan. "Energies,Vol. 8, No. 1685-1700, 2015.
50.
網路資料:泛科學 https://pansci.asia/archives/86303
51.
網路資料:中央氣象局颱風資料庫https://rdc28.cwa.gov.tw/TDB/public/warning_typhoon_list/
52.
張景鐘,"台灣地區風速頻譜之探討",中華民國風工程學會電子期刊,第5期,pp. 54-80,2013。
53.
崔海平,"離岸風電場址風況、海洋參數及負載分析技術研究",金屬工業研究發展中心研究報告,台灣,2018。
54.
周聖勳, "離岸風力機塔架之開機負載及失效評估分析", 國立中央大學碩士論文,2021。
55.
P. Amirafshari, F. Brenan, A. Kolios, “A Fracture Mechanics Framework for Optimising Design and Inspection of Offshore Wind Turbine Support Structures Against Fatigue Failure,” Wind Energy Science, Vol. 6, No. 3, pp. 677-699, 2021.
100
56.
AWS, “Structural Welding Code—Steel,” AWS D1.1/D1.1M, 2006.
57.
ASME, “Rules for Construction of Pressure Vessels,” ASME BPVC Section VIII, 2017.
58.
N. Stavridou, E. Efthymiou, and C. C. Baniotopoulos, “Welded Connections of Wind Turbine Towers under Fatigue Loading: Finite Element Analysis and Comparative Study,” American Journal of Engineering and Applied Sciences, Vol. 8, No. 4, pp. 489-503, 2015.
59.
馬尼,"平板與薄管中半橢圓形裂縫疲勞成長的數值模擬",國立虎尾科技大學飛機工程系航空與電子科技碩士班,碩士論文,2019。
60.
Vaziri, A., and H. E. Estekanchi,"Buckling of Cracked Cylindrical thin shells under combined internal pressure and axial compression."Thin-Walled Structures," Vol 44, 2006.02.
61.
IIW-1823-07 2008 “Recommendations for fatigue design of welded joints and components,”International Institute of Welding, Paris, France.
62.
K. Dai, C. Sheng, Z. Zhao, Z. Yi, A. Camara, G. Bitsuamlak, "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds. "Wind and Structures,Vol. 25, No. 79-100. 2017.
指導教授 黃俊仁(Jiun-Ren Hwan) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明