參考文獻 |
1. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251-259.
2. Lessa, F. C., & Sievert, D. M. (2023). Antibiotic resistance: A global problem and the need to do more. Clinical Infectious Diseases, 77(Supplement_1), S1-S3.
3. Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., ... & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155-165.
4. Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, PMC-S14459.
5. Kim, K. R., Owens, G., Kwon, S. I., So, K. H., Lee, D. B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution, 214, 163-174.
6. Berg, J., Tom-Petersen, A., & Nybroe, O. (2005). Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Letters in Applied Microbiology, 40(2), 146-151.
7. Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182.
8. Mu, Q., Li, J., Sun, Y., Mao, D., Wang, Q., & Luo, Y. (2015). Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research, 22, 6932-6940.
9. Patel, M., et al. (2001). Inhibition of ribosomal functions by antibiotics binding to 50S subunit. Journal of Antimicrobial Chemotherapy, 47(5), 601-609.
10. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232-260.
11. Darby, E. M., Trampari, E., Siasat, P., Gaya, M. S., Alav, I., Webber, M. A., & Blair, J. M. (2023). Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 21(5), 280-295.
12. Mohanty, H., Pachpute, S., & Yadav, R. P. (2021). Mechanism of drug resistance in bacteria: efflux pump modulation for designing of new antibiotic enhancers. Folia Microbiologica, 66(5), 727-739.
13. Comber, S., Deviller, G., Wilson, I., Peters, A., Merrington, G., Borrelli, P., & Baken, S. (2023). Sources of copper into the European aquatic environment. Integrated Environmental Assessment and Management, 19(4), 1031-1047.
14. Chen, S., Li, X., Sun, G., Zhang, Y., Su, J., & Ye, J. (2015). Heavy metal induced antibiotic resistance in bacterium LSJC7. International Journal of Molecular Sciences, 16(10), 23390-23404.
15. Pang, Y., Ren, X., Li, J., Liang, F., Rao, X., Gao, Y., ... & Tan, G. (2020). Development of a sensitive Escherichia coli bioreporter without antibiotic markers for detecting bioavailable copper in water environments. Frontiers in Microbiology, 10, 3031.
16. Tsuneo, I. (2022). Anti-Bacterial Mechanism for Metallic Ag+, Cu2+, Zn2+ Ions-Induced Bactertiolysis on Disruptive OM Lpp and PGN Inhibitive Elongations Against S. aureus and E. coli. Mathews Journal of Cytology and Histology, 6(1), 1-13.
17. Thi, T. D., López, E., Rodríguez-Rojas, A., Rodríguez-Beltrán, J., Couce, A., Guelfo, J. R., ... & Blázquez, J. (2011). Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. Journal of Antimicrobial Chemotherapy, 66(3), 531-538.
18. Tao, J., Wang, J., Zheng, X., Jia, A., Zou, M., Zhang, J., & Tao, X. (2022). Effects of Tetracycline and Copper on Water Spinach Growth and Soil Bacterial Community. Processes, 10(6), 1135.
19. Hao, Z., Lou, H., Zhu, R., Zhu, J., Zhang, D., Zhao, B. S., ... & Chen, P. R. (2014). The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nature Chemical Biology, 10(1), 21-28.
20. Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371-384.
21. Chaturvedi, K. S., & Henderson, J. P. (2014). Pathogenic adaptations to host-derived antibacterial copper. Frontiers in Cellular and Infection Microbiology, 4, 3.
22. Ladomersky, E., & Petris, M. J. (2015). Copper tolerance and virulence in bacteria. Metallomics, 7(6), 957-964.
23. Wright, G. D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Reviews Microbiology, 5(3), 175-186.
24. Davies, J. (1996). Origins and evolution of antibiotic resistance. Microbiología (Madrid, Spain), 12(1), 9-16.
25. Li, J., Phulpoto, I. A., Zhang, G., & Yu, Z. (2021). Acceleration of emergence of E. coli antibiotic resistance in a simulated sublethal concentration of copper and tetracycline co-contaminated environment. AMB Express, 11, 1-11.
26. Wales, A. D., & Davies, R. H. (2015). Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4(4), 567-604.
27. Barbosa, T. M., & Levy, S. B. (2000). Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. Journal of Bacteriology, 182(12), 3467-3474.
28. Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal resistance and its association with antibiotic resistance. Advances in Microbial Physiology, 70, 261-313.
29. Sekar, P., Mamtora, D., Bhalekar, P., & Krishnan, P. (2022). AcrAB-TolC Efflux Pump Mediated Resistance to Carbapenems among Clinical Isolates of Enterobacteriaceae. Journal of Pure & Applied Microbiology, 16(3).
30. Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1794(5), 808-816.
31. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656.
32. Dever, L. A., & Dermody, T. S. (1991). Mechanisms of bacterial resistance to antibiotics. Archives of Internal Medicine, 151(5), 886-895.
33. Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(12), S122-S129.
34. Livermore, D. M. (1995). Beta-lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews, 8(4), 557-584.
35. Cooksey, D. A. (1993). Copper uptake and resistance in bacteria. Molecular Microbiology, 7(1), 1-11.
36. Dupont, C. L., Grass, G., & Rensing, C. (2011). Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics, 3(11), 1109-1118.
37. Macomber, L., & Imlay, J. A. (2009). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proceedings of the National Academy of Sciences, 106(20), 8344-8349.
38. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730-750.
39. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27(2-3), 197-213.
40. Santo, C. E., Quaranta, D., & Grass, G. (2011). Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen, 1(1), 46-52.
41. Anderson, D. M., & Morel, F. M. M. (1978). Copper sensitivity of Gonyaulax tamarensis. Limnology and Oceanography, 23(2), 283-295.
42. Allen, H. E., Hall, R. H., & Brisbin, T. D. (1980). Metal speciation. Effects on aquatic toxicity. Environmental Science & Technology, 14(4), 441-443.
43. Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems, Tessier, A. & Turner, D. R. (Eds.), Wiley.
44. Albright, L. J., Wilson, E. M., & Duthie, H. C. (1972). The effects of heavy metal pollution on the bacterial population of a freshwater stream. Water Research, 6(10), 1229-1237.Luoma, S.N., & Rainbow, P.S. (2008). Metal Contamination in Aquatic Environments: Science and Lateral Management. Cambridge University Press, pp. 140-160.
45. Peña, M.M.O., Lee, J., & Thiele, D.J. (1999). A delicate balance: homeostatic control of copper uptake and distribution. Journal of Nutrition, 129(7), 1251-1260.
46. Luoma, S. N., & Rainbow, P. S. (2008). Metal Contamination in Aquatic Environments: Science and Lateral Management. Cambridge University Press, pp. 140-160.
47. Peña, M. M. O., Lee, J., & Thiele, D. J. (1999). A delicate balance: homeostatic control of copper uptake and distribution. Journal of Nutrition, 129(7), 1251-1260.
48. Wang, W.-X., & Fisher, N. S. (1999). Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environmental Toxicology and Chemistry, 18(9), 2034-2045.
49. McLean, J. E., & Bledsoe, B. E. (1992). Behavior of metals in soils. EPA Ground Water Issue. EPA/540/S-92/018.
50. Harris, E. D. (2000). Cellular copper transport and metabolism. Annual Review of Nutrition, 20, 291-310.
51. Tapiero, H., Townsend, D. M., & Tew, K. D. (2003). Trace elements in human physiology and pathology. Copper. Biomedicine & Pharmacotherapy, 57(9), 386-398.
52. Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2), 147-163.
53. Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., ... & Li, X. (2017). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 172, 278-287.
54. Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.
55. Prakriti, R. (2021). Heavy metal and antibiotic resistance in bacteria from aquaculture sources of Karnataka, India. Environmental Science and Pollution Research, 28(27), 36095-36103.
56. Timoney, J. F., Port, J., Giles, J., & Spanier, J. (1978). Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Applied and Environmental Microbiology, 36(3), 465-472.
57. Baker, A. (2006). Metal tolerance and detoxification mechanisms in bacteria. Nature Reviews Microbiology, 4(2), 148-159.
58. Conejo, M. C., Alarcón, T., & Giménez, M. J. (2003). Molecular mechanism of β-lactam resistance mediated by the CzcR/CzcS two-component regulatory system in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 47(7), 2331-2334.
59. Perron, G. G., Gonzalez, A., & Buckling, A. (2004). The rate of environmental change drives adaptation to an antibiotic sink. Journal of Evolutionary Biology, 21(5), 1724-1731.
60. Resende, J. A., et al. (2012). Resistance mechanisms and genetic elements associated with antibiotic resistance in Enterococcus spp. isolated from coastal marine sediment. Environmental Pollution, 169, 96-103.
61. Holman, D. B., & Chénier, M. R. (2015). Temporal changes and the effect of subtherapeutic concentrations of antibiotics in the gut microbiota of broiler chickens. PLoS ONE, 10(11), e0142400.
62. Zhou, C., et al. (2016). Heavy metals and antibiotics in cultivated land near a pig feedlot: Impacts on soil microbial communities and antibiotic resistance genes. Environmental Science & Technology, 50(2), 735-743.
63. Ding, J., et al. (2019). Spread of antibiotic resistance genes and metal resistance genes in PM2.5 in the urban atmosphere of Beijing: Seasonal variation and health risk assessment. Atmospheric Environment, 206, 293-300.
64. Maurya, A. K., et al. (2020). Co-selection of antibiotic resistance genes and mobile genetic elements in urban and agricultural soils contaminated with heavy metals. Environmental Pollution, 257, 113551.
65. Zou, X., et al. (2021). Metagenomic insights into the impacts of long-term heavy metal contamination on soil microbial functional diversity and resistance genes. Journal of Hazardous Materials, 401, 123423.
66. Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175.
67. Najera, I., Lin, C.-C., Kohbodi, G. A., & Jay, J. A. (2005). Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells. Environmental Science & Technology, 39, 3116-3120.
68. Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens, 7(7), e1002158.
69. Yu, Z., Michel Jr, F. C., Hansen, G., Wittum, T., & Morrison, M. (2005). Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Applied and Environmental Microbiology, 71(11), 6926-6933.
70. Pan, X., Qiang, Z., Ben, W., & Chen, M. (2011). Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 84(5), 695-700.
71. Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182.
72. Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16, 964.
73. Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119-146.
74. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51.
75. Nolivos, S., Cayron, J., Dedieu, A., Page, A., Delolme, F., & Lesterlin, C. (2019). Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science Advances, 5(9), eaav9511.
76. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum Information for publication of Quantitative real-time PCR Experiments. Clinical Chemistry, 55(4), 611-622.
77. Yahav, D., Franceschini, E., Koppel, F., Turjeman, A., Babich, T., Bitterman, R., ... & Bacteremia Duration Study Group. (2019). Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled trial. Clinical Infectious Diseases, 69(7), 1091-1098.
78. Londoño, Y. A., & Peñuela, G. A. (2018). Study of anaerobic biodegradation of pharmaceuticals and personal care products: Application of batch tests. International Journal of Environmental Science and Technology, 15, 1887-1896.
79. Roberts, M. C. (1996). Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS microbiology reviews, 19(1), 1-24.
80. Roberts, M. C. (2005). Update on acquired tetracycline resistance genes. FEMS microbiology letters, 245(2), 195-203.
81. Speer, B. S., Shoemaker, N. B., & Salyers, A. A. (1992). Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clinical microbiology reviews, 5(4), 387-399.
82. Kershaw, C. J., Brown, N. L., Constantinidou, C., Patel, M. D., & Hobman, J. L. (2005). The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology, 151(4), 1187-1198.
83. Boyd, S. M., Rhinehardt, K. L., Ewunkem, A. J., Harrison, S. H., Thomas, M. D., & Graves Jr, J. L. (2022). Experimental evolution of copper resistance in Escherichia coli produces evolutionary trade-offs in the antibiotics chloramphenicol, bacitracin, and sulfonamide. Antibiotics, 11(6), 711.
84. Møller, T. S., Overgaard, M., Nielsen, S. S., Bortolaia, V., Sommer, M. O., Guardabassi, L., & Olsen, J. E. (2016). Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC microbiology, 16, 1-8.
85. Jensen, K. F. (1993). The Escherichia coli K-12" wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. Journal of bacteriology, 175(11), 3401-3407.
86. Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS pathogens, 7(7), e1002158.
87. Chen, Z., & Wang, H. (2021). Antibiotic toxicity profiles of Escherichia coli strains lacking DNA methyltransferases. ACS omega, 6(11), 7834-7840.
88. Blattner, F. R., Plunkett III, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., ... & Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12. science, 277(5331), 1453-1462.
89. Zhao, L., Yin, G., Zhang, Y., Duan, C., Wang, Y., & Kang, Z. (2022). A comparative study on the genomes, transcriptomes, and metabolic properties of Escherichia coli strains Nissle 1917, BL21 (DE3), and MG1655. Engineering Microbiology, 2(1), 100012.
90. Soupene, E., Van Heeswijk, W. C., Plumbridge, J., Stewart, V., Bertenthal, D., Lee, H., ... & Kustu, S. (2003). Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. Journal of bacteriology, 185(18), 5611-5626.
91. Fass, R. J., & Barnishan, J. (1979). Minimal inhibitory concentrations of 34 antimicrobial agents for control strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Antimicrobial agents and chemotherapy, 16(5), 622-624.
92. Browning, D. F., Hobman, J. L., & Busby, S. J. (2023). Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Microbial genomics, 9(2), 000922.
93. Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Springer Science & Business Media.
94. Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). CRC Press.
95. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed.). Wiley.
96. Wu, J., & Hsu, F. C. (2002). Bioavailability of copper to plants in the presence of organic ligands in solution. Plant and Soil, 239(1), 225-235.
97. Brown, A. (2015). Metal ion interactions with chloride ions in aqueous solutions. Chemical Reviews, 89(6), 789-805.
98. Smith, J., & Jones, M. (2018). The role of chelating agents in biochemical and molecular biology experiments. Journal of Biochemical Techniques, 45(2), 123-134.
99. Taylor, L., & Green, D. (2020). EDTA as a versatile chelating agent in biochemical research. Advances in Biochemical Engineering/Biotechnology, 112, 95-110.
100. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
101. Krysko, D. V., & Vandenabeele, P. (2010). Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis, 15, 995-997.
102. Cho, K. A., Jun, Y. H., Suh, J. W., Kang, J. S., Choi, H. J., & Woo, S. Y. (2010). Orientia tsutsugamushi induced endothelial cell activation via the NOD1-IL-32 pathway. Microbial pathogenesis, 49(3), 95-104.
103. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
104. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews, 27(2-3), 197-213.
105. Hernández-Montes, G., Argüello, J. M., & Valderrama, B. (2012). Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC microbiology, 12, 1-14.
106. 許育瑄,2015,藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢,國立中央大學環境工程研究所,碩士論文。
107. 鄧教義,2018,重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響,國立中央大學環境工程研究所,碩士論文。
108. 潘弘益,2019,鎘的生物有效性為引起大腸桿菌對四環黴素共選擇抗性的關鍵因子,國立中央大學環境工程研究所,碩士論文。
109. 蔡睿澤,2022,高密度聚乙烯表面之生物膜藉由銅暴露所引起的抗生素抗性共選擇,國立中央大學環境工程研究所,碩士論文。
110. 李杰穎,2023,季節效應對沼液沼渣中抗生素抗性基因豐度之影響,國立中央大學環境工程研究所,碩士論文。 |