博碩士論文 111323108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:167 、訪客IP:18.117.78.145
姓名 洪子翔(Tzu-Hsiang Hung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於多通道 RSS 的可見光定位系統之設計與其訊號處理方法
(Design of Visible Light Positioning System Based on Multi-Channel RSS and its Signal Processing Approach)
相關論文
★ 微波化學強化碳化矽表面拋光之研究★ 智慧製造垂直系統整合之資產管理殼
★ 應用於智慧製造之網宇實體系統訓練資料異常檢知★ 應用深度學習與物聯網評估CNC加工時間
★ 混合視覺與光達感測的感知融合機器人定位系統★ 結合遺傳演算法與類神經網路之 分散式機械結構最佳化系統之研究
★ 以資料分散式服務發展智慧產品與其系統之研究★ 精微產品組裝的智能人機協作系統
★ YOLOv7 模型於小物件檢測之改良與應用★ 應用分治法於刀具壽命預測模型之研究
★ 自動化工作站排程系統之設計與應用★ 基於區塊鏈之去中心化製造執行系統
★ 應用於專案排程之混合蟻群演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-31以後開放)
摘要(中) 隨著傳統製造業面臨產品多樣化和生產需求迅速變化的挑戰,生產線的靈活性需求日益增加。全自動化設備雖能提升效率,但在少量生產情況下,其高昂成本使投資回報難以令人滿意。同時,人力成本逐年上升,高度適應性的人力難以應對產線需求。因此,企業轉而部署具適應性且能執行複雜裝配任務的機器手臂。然而,頻繁的產線更換要求機器手臂每次更動後需重新校正,這過程既耗時又繁瑣。使用教導器進行再定位也是一個耗時的過程,且校正點位越多,所需時間越長。此外,這一過程需要經驗豐富且技術熟練的人力配合,否則難以保證校正精度,從而影響產品品質。
本研究提出一種新的方法,結合可見光定位和工業機器手臂,通過利用可見光的特性及接收訊號強度(Received Signal Strength, RSS)環境指紋識別技術,搭配神經網路模型來實現對機器手臂的再定位。該方法基於多輸入多輸出系統(Multiple Input Multiple Output, MIMO),並透過RSS環境指紋識別技術獲取精確的位置信息。在環境指紋識別技術中,應用了相應的訊號處理和資料處理方法,以準備模型訓練所需的數據。這些經過處理後的數據輸入神經網路、柯爾莫哥洛夫-阿諾爾德網路與隨機森林回歸等多種模型進行訓練和評估,以分析這些模型在不同條件下的特性和表現,從而提高定位的準確性和穩定性。研究結果表明,本系統的平均精度誤差低於5 mm。
在數據處理過程中,以濾波器預先濾除環境光與其他雜訊,並對接收的訊號強度進行分析,使用訊號雜訊比(Signal-to-noise ratio, SNR)進行特徵篩選,盡可能減少在資料特徵方面產生的SNR誤差,提高模型的擬合度和數據的預測能力。透過本研究的SNR特徵篩選方法,整體精度提升了55.65%。而這些技術的結合宗旨在減少機器手臂校正所需的時間和人力,提高生產線的靈活性和效率。
摘要(英) As traditional manufacturing industries face the challenges of product diversification and rapidly changing production demands, the need for flexibility in production lines is increasingly growing. Although fully automated equipment can enhance efficiency, its high costs make the return on investment unsatisfactory in low-volume production scenarios. Additionally, with rising labor costs, highly adaptable human labor is becoming insufficient to meet the demands of production lines. Consequently, companies are turning to deploy adaptable robotic arms capable of performing complex assembly tasks. However, frequent production line changes require the robotic arms to be recalibrated each time they are repositioned, a process that is both time-consuming and tedious. Using a teaching pendant for repositioning is also a time-intensive process, and the more calibration points required, the longer the time needed. Moreover, this process requires experienced and skilled personnel to ensure calibration accuracy; otherwise, product quality may be compromised.
This study proposes a novel method that combines visible light positioning with industrial robotic arms. By utilizing the characteristics of visible light and the Received Signal Strength (RSS) fingerprinting technique, along with neural network models, this method aims to achieve the repositioning of robotic arms. The method is based on a Multiple Input Multiple Output (MIMO) system and obtains precise location information through the RSS fingerprinting technique. In the fingerprinting process, appropriate signal processing and data processing methods are applied to prepare the data needed for model training. The processed data is then input into various models, including Neural Networks, Kolmogorov-Arnold Networks, and Random Forest Regressor, for training and evaluation, analyzing their characteristics and performance under different conditions to improve positioning accuracy and stability. The research results show that the system achieves an average accuracy error of less than 5 mm.
During the data processing, filters are used to preemptively eliminate ambient light and other noise, and the received signal strength is analyzed using the Signal-to-Noise Ratio (SNR) for feature selection, minimizing SNR errors in the data features and improving the model′s fit and predictive capabilities. Through the SNR feature selection method proposed in this study, overall accuracy was improved by 55.65%. The integration of these techniques aims to reduce the time and manpower required for robotic arm calibration, thereby enhancing the flexibility and efficiency of production lines.
關鍵字(中) ★ 可見光定位
★ 接收訊號強度指紋識別
★ 機器學習
★ 機器手臂校正
★ 訊號處理
關鍵字(英) ★ Visible Light Positioning
★ Received Signal Strength Fingerprints
★ Machine Learning
★ Robotic Arm Calibration
★ Signal Processing
論文目次 AI 工具應用聲明 i
摘要 ii
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1研究背景 1
1-2研究動機 1
1-3文獻探討 2
1-3-1再定位技術之應用現況 2
1-3-2可見光定位技術 2
1-4研究目的 4
1-5論文架構 4
第二章 相關技術 6
2-1再定位技術 6
2-1-1 Wi-Fi室內定位 6
2-1-2視覺定位 7
2-1-3光定位技術 7
2-1-4基於多輸入多輸出光定位技術 10
2-2環境指紋抽樣方法 11
2-2-1網格採樣法 12
2-2-2拉丁超立方抽樣法 12
2-2-3均勻設計 13
2-3機器學習技術 13
2-3-1集成式學習-隨機森林 14
2-3-2多層感知器 14
2-3-3柯爾莫哥洛夫-阿諾爾德網路 15
第三章 研究方法與實驗設計 17
3-1研究架構 17
3-2架構說明 18
3-3成效評估 19
第四章 實驗設計 21
4-1環境配置 21
4-1-1實驗設備 22
4-1-2接收端-治具設計 23
4-1-3多輸入多輸出系統 24
4-1-4發射頻率選用與設計 25
4-1-5視場角分布分析 27
4-2環境指紋收集 29
4-2-1採樣空間定義 29
4-2-2環境指紋採樣方法 30
4-2-3原始資料格式 33
4-3資料前處理 34
4-3-1高通濾波參數配置 35
4-3-2快速傅立葉轉換 36
4-3-3特徵篩選評估 39
4-4模型評估 45
第五章 結果與討論 46
5-1基於單通道接收訊號在不同高度下分布 46
5-2基於SNR特徵篩選的特結果比較 52
5-3數據點數量於Z軸分析 56
5-4使用多種採樣法於不同模型之分析結果 59
第六章 結論與未來展望 66
6-1結論與貢獻 66
6-2限制與範圍 67
6-3未來與展望 68
參考文獻 69
參考文獻 [1] J.-K. Huang, "因應少量多樣化機械手臂底板快速定位之研究," 碩士論文, National Chin-Yi University of Technology, 2017. [Online]. Available: https://hdl.handle.net/11296/4ufa8v
[2] B.-H. Wu, "發展視覺導引機械手臂之動態定位補償系統," 碩士論文, National Taipei University of Technology, 2016. [Online]. Available: https://hdl.handle.net/11296/jkuj2f
[3] R. Huang and T. Yamazato, "A review on image sensor communication and its applications to vehicles," in Photonics, 2023, vol. 10, no. 6: MDPI, p. 617.
[4] S. M. Kouhini et al., "LiFi positioning for industry 4.0," IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no. 6, pp. 1-15, 2021.
[5] S. M. Kouhini, Z. Ma, C. Kottke, S. M. Mana, R. Freund, and V. Jungnickel, "Object Tracking in an Indoor Scenario: Potential for Centimeter Accuracy with LiFi," in 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2022: IEEE, pp. 806-811.
[6] W. Guan et al., "Robot localization and navigation using visible light positioning and SLAM fusion," Journal of Lightwave Technology, vol. 39, no. 22, pp. 7040-7051, 2021.
[7] W. Guan, L. Huang, B. Hussain, and C. P. Yue, "Robust robotic localization using visible light positioning and inertial fusion," IEEE Sensors Journal, vol. 22, no. 6, pp. 4882-4892, 2021.
[8] T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE transactions on Consumer Electronics, vol. 50, no. 1, pp. 100-107, 2004.
[9] C. Yang and H.-R. Shao, "WiFi-based indoor positioning," IEEE Communications Magazine, vol. 53, no. 3, pp. 150-157, 2015.
[10] W. Li, Y. Chen, and M. Asif, "A Wi-Fi-based indoor positioning algorithm with mitigating the influence of NLOS," in 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), 2016: IEEE, pp. 520-523.
[11] J.-H. Yang, "精微產品組裝的智能人機協作系統," 碩士論文, National Central University, 2023. [Online]. Available: https://hdl.handle.net/11296/54p869
[12] J. Yu, K. Weng, G. Liang, and G. Xie, "A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation," in 2013 IEEE international conference on robotics and biomimetics (ROBIO), 2013: IEEE, pp. 1175-1180.
[13] H. Haas, L. Yin, Y. Wang, and C. Chen, "What is lifi?," Journal of lightwave technology, vol. 34, no. 6, pp. 1533-1544, 2015.
[14] K. Ying, H. Qian, R. J. Baxley, and S. Yao, "Joint optimization of precoder and equalizer in MIMO VLC systems," IEEE Journal on selected areas in communications, vol. 33, no. 9, pp. 1949-1958, 2015.
[15] D. H. Mai, H. D. Le, T. V. Pham, and A. T. Pham, "Design and performance evaluation of large-scale VLC-based indoor positioning systems under impact of receiver orientation," Ieee Access, vol. 8, pp. 61891-61904, 2020.
[16] B. Fahs, A. J. Chowdhury, and M. M. Hella, "A 12-m 2.5-Gb/s lighting compatible integrated receiver for OOK visible light communication links," Journal of Lightwave Technology, vol. 34, no. 16, pp. 3768-3775, 2016.
[17] Y. Hou, S. Xiao, H. Zheng, and W. Hu, "Multiple access scheme based on block encoding time division multiplexing in an indoor positioning system using visible light," Journal of optical communications and networking, vol. 7, no. 5, pp. 489-495, 2015.
[18] A. Costanzo and V. Loscri, "Visible light indoor positioning in a noise-aware environment," in 2019 IEEE Wireless Communications and Networking Conference (WCNC), 2019: IEEE, pp. 1-6.
[19] H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, "PWM-based PPM format for dimming control in visible light communication system," in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012: IEEE, pp. 1-5.
[20] B. Zhou, A. Liu, and V. Lau, "Visible light-based user position, orientation and channel estimation using self-adaptive location-domain grid sampling," IEEE Transactions on Wireless Communications, vol. 19, no. 7, pp. 5025-5039, 2020.
[21] F. A. Viana, "A tutorial on Latin hypercube design of experiments," Quality and reliability engineering international, vol. 32, no. 5, pp. 1975-1985, 2016.
[22] K.-T. Fang, D. K. Lin, P. Winker, and Y. Zhang, "Uniform design: theory and application," Technometrics, vol. 42, no. 3, pp. 237-248, 2000.
[23] A. L. Samuel, "Some studies in machine learning using the game of checkers," IBM Journal of research and development, vol. 3, no. 3, pp. 210-229, 1959.
[24] L. Breiman, "Bagging predictors," Machine learning, vol. 24, pp. 123-140, 1996.
[25] A. Bosch, A. Zisserman, and X. Munoz, "Image classification using random forests and ferns," in 2007 IEEE 11th international conference on computer vision, 2007: Ieee, pp. 1-8.
[26] A. B. Adetunji, O. N. Akande, F. A. Ajala, O. Oyewo, Y. F. Akande, and G. Oluwadara, "House price prediction using random forest machine learning technique," Procedia Computer Science, vol. 199, pp. 806-813, 2022.
[27] S. Du, F. Zhang, and X. Zhang, "Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach," ISPRS journal of photogrammetry and remote sensing, vol. 105, pp. 107-119, 2015.
[28] J. Zupan, "Introduction to artificial neural network (ANN) methods: what they are and how to use them," Acta Chimica Slovenica, vol. 41, no. 3, p. 327, 1994.
[29] Z. Liu et al., "Kan: Kolmogorov-arnold networks," arXiv preprint arXiv:2404.19756, 2024.
[30] Blealtan. "An Efficient Implementation of Kolmogorov-Arnold Network." https://github.com/Blealtan/efficient-kan.git (accessed Aug 16, 2024).
[31] L.-S. Hsu et al., "Using data pre-processing and convolutional neural network (CNN) to mitigate light deficient regions in visible light positioning (VLP) systems," Journal of Lightwave Technology, vol. 40, no. 17, pp. 5894-5900, 2022.
[32] E. Lam and T. Little, "Visible light positioning: moving from 2D planes to 3D spaces," Chinese Optics Letters, vol. 17, no. 3, p. 030604, 2019.
指導教授 林錦德(Chin-Te Lin) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明