摘要(英) |
With global climate change and growing environmental awareness, industries are increasingly concerned about the environmental impact of their products. As key tools for evaluating the environmental impact of a product′s life cycle, carbon footprint and material flow cost analysis have become crucial considerations for sustainable development. This study aims to examine the carbon footprint and material flow cost performance of the diamond disc manufacturing process at Factory A, providing insights and references for companies in formulating environmental protection strategies. The results show that the carbon footprint of the diamond disc is 12.68 kgCO2e/pc, with the manufacturing stage contributing the most at 61.5%, followed by the raw material acquisition stage at 38.5%. Among these, QC3 (dewaxing and hard soldering process) is the primary source of carbon emissions, with a discharge of 5.44 kgCO2e/pc, mainly due to the high electricity usage and prolonged high-temperature maintenance required in this stage. QC1 (the process of diamond sorting) follows with 4.33 kgCO2e/pc, primarily from the cutting and manual processing of the metal base. QC4 (the process of diamond sharpening and flattening) has a carbon emission of 1.51 kgCO2e/pc, mainly due to energy consumption during the grinding process. Material flow cost analysis reveals that 55% of the products are positive outputs, while 45% are negative outputs. The positive product cost for QC3 is 29.8 million NTD, whereas the negative product cost is 22.2 million NTD, indicating slight difference. This reflects the extensive use of auxiliary materials and chemicals in this stage, leading to high costs for waste liquid treatment. Positive product cost of QC2 is 13.0 million NTD, with a negative product cost of 7.4 million NTD, suggesting some room for waste treatment optimization in the screening process. QC4 shows a positive product cost of 35.6 million NTD and a negative product cost of only 7.5 million NTD, indicating high resource utilization efficiency during the grinding and trimming stage. Based on the above analysis, the proposed directions improvement include optimizing the use of auxiliary materials and chemicals in QC3, adopting more efficient technologies and equipment to reduce waste and energy consumption; enhancing the efficiency and usage of grinding equipment in QC4 to reduce energy consumption. Additionally, for QC1, it is recommended that suppliers optimize material usage and manufacturing methods or seek suppliers with lower carbon emissions to further reduce the overall carbon footprint. |
參考文獻 |
Barkhausen, R., Rostek, L., Miao, Z. C., & Zeller, V. (2023). Combinations of material flow analysis and life cycle assessment and their applicability to assess circular economy requirements in EU product regulations. A systematic literature review. Journal of Cleaner Production, 407, 137017.
Chen, R., Zhang, R., & Han, H. (2021). Where has carbon footprint research gone? Ecological Indicators, 120, 106882.
Christ, K. L., & Burritt, R. L. (2016). ISO 14051: A new era for MFCA implementation and research. Revista de Contabilidad – Spanish Accounting Review, 19(1), 1–9.
Greenhouse Gas Protocol. (2011). Corporate Value Chain (Scope 3) Accounting and Reporting Standard.
Hoopr, B. J., Byrne, G., & Gallingan, S. (2002). Pad conditioning in chemical mechanical polishing. Journal of Materials Processing Technology, 123, 107-113.
IEA. (2024). COP28: Tracking the Energy Outcomes.
IPCC. (2023). CLIMATE CHANGE 2023 Synthesis Report.
Karl, T. R., & Trenberth, K. E. (2003). Modern global climate change. Science, 302(5651), 1719–1723.
Ke, N., Chen, J., & Cheng, T. (2024). The drivers of carbon intensity and emission reduction strategies in heavy industry: Evidence from nonlinear and spatial perspectives. Ecological Indicators, 160, 111764.
PWC. (2023). Net Zero Economy Index 2023.
Sahu, A. K., Padhy, R. K., Das, D., & Gautam, A. (2021). Improving financial and environmental performance through MFCA: A SME case study. Journal of Cleaner Production, 279, 123751.
Li, Z. C., Baisie, E. A., Zhang, X. H., & Zhang, Q. (2016). Diamond disc pad conditioning in chemical mechanical polishing. In Advances in Chemical Mechanical Planarization (CMP) (pp. 327-357).
Perera, K., Kuruppuarachchi, D., Kumarasinghe, S., & Suleman, M. T. (2023). The impact of carbon disclosure and carbon emissions intensity on firms’ idiosyncratic volatility. Energy Economics, 128, 107053.
Tetteh, E. K., Amankwa, M. O., Yeboah, C., & Amankwa, M. O. (2021). Emerging carbon abatement technologies to mitigate energy-carbon footprint - a review. Cleaner Materials, 2, 100020.
WMO. (2024). State of the Global Climate 2023.
Yang, G., Zha, D., Cao, D., & Zhang, G. (2024). Time for a change: Rethinking the global renewable energy transition from the Sustainable Development Goals and the Paris Climate Agreement. The Innovation, 5(2), 100582.
Zheng, S., & Jin, S. (2023). Is corporate green investment a determinant of corporate carbon emission intensity? A managerial perspective. Heliyon, 9, e22401.
環境部,「我國國家溫室氣體排放清冊報告(2023年版)」,2023。
環境部,「溫室氣體排放量盤查作業指引」,2023。
中央研究院,「臺灣淨零科技研發政策建議書 No.17」,2022。
國家科學及技術委員會、環境部,「國家氣候變遷科學報告2024:現象、衝擊與調適」,2024。
核能研究所-能源經濟及策略研究中心「各國能源密集度趨勢比較」,2017。
經濟部國際貿易局,「國際鏈結之企業碳足跡指引」,2021。
國家發展委員會,「台灣經濟論衡:淨零排放關鍵戰略」,2022。
中央銀行,「我國與主要貿易對手通貨對美元之匯率」,2023。
黃資文,「集結鑽石碟對拋光墊之修整與效能研究」,碩士論文,國立清華大學,2010。
黃世傑,「機械設備與產品之碳足跡與水足跡評估方法研究」,碩士論文,國立成功大學,2015。
張晁綸,「半導體封裝產品環境衝擊與碳足跡評估-以某半導體公司為例」,碩士論文,國立台北科技大學,2022。
盧紀瑋,「物質流成本會計分析-以晶圓製造廠為例」,碩士論文,國立臺北大學,2014。
葉豐銘,「整合物質流成本會計與碳足跡概念之資訊管理系統設計與發展」,碩士論文,國立清華大學,2013
張和忠,「溫室氣體盤查與減量評估以某半導體封測廠為例」,碩士論文,國立中央大學,2019。
黃宏毅,「觸碰面板產品碳足跡之減量評估-以H公司製造廠為例作初探」,碩士論文,國立台南大學,2017。
蔡德慧,「基於創新擴散理論探討企業採用物質流成本會計影響因素之研究」,碩士論文,國立台北科技大學,2016。
陳宣余,「分析碳密集度、人口數及發電量對經濟發展影響之研究」,碩士論文,國立臺北大學,2012。
黃馨儀,「1958年毛澤東與大躍進運動形成之研究」,碩士論文,國立中央大學,2019。
何靖國,「化學機械拋光研磨墊與鑽石修整器之研究」,博士論文,國立台北科技大學,2004。
黃文輝,「物質流成本分析(MFCA)簡介」,財團法人工業技術研究院綠能與環境研究所,2022。
OurWorldInData,https://ourworldindata.org/
Enerdata,https://www.enerdata.net/ |