參考文獻 |
[1] G. NEWSWIRE. "Global Quartz Market Report (2022 to 2027) - Industry Trends, Share, Size, Growth, Opportunity and Forecasts." https://www.globenewswire.com/en/news-release/2022/09/15/2516588/28124/en/Global-Quartz-Market-Report-2022-to-2027-Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts.html (accessed.
[2] A. Ballato, "Basic Material Quartz and Related Innovations," in Piezoelectricity: Evolution and Future of a Technology, W. Heywang, K. Lubitz, and W. Wersing Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 9-35.
[3] M. S. Ghiorso, I. S. E. Carmichael, and L. K. Moret, "Inverted high-temperature quartz," Contributions to Mineralogy and Petrology, vol. 68, no. 3, pp. 307-323, 1979/03/01 1979, doi: 10.1007/BF00371553.
[4] D. Th, Y. Jeanvoine, J. Hafner, and J. G. Ángyán, "Polymorphism in silica studied in the local density and generalized-gradient approximations," Journal of Physics: Condensed Matter, vol. 11, no. 19, p. 3833, 1999/05/17 1999, doi: 10.1088/0953-8984/11/19/306.
[5] P. Saha, N. Annamalai, and A. K. Guha, "Synthetic Quartz Production and Applications," Transactions of the Indian Ceramic Society, vol. 50, no. 5, pp. 129-135, 1991/01/01 1991, doi: 10.1080/0371750X.1991.10804507.
[6] F. Iwasaki and H. Iwasaki, "Historical review of quartz crystal growth," Journal of crystal growth, vol. 237, pp. 820-827, 2002.
[7] L. A. Thomas, N. Wooster, and W. A. Wooster, "The hydrothermal synthesis of quartz," Discussions of the Faraday Society, 10.1039/DF9490500341 vol. 5, no. 0, pp. 341-345, 1949, doi: 10.1039/DF9490500341.
[8] C. S. Brown, R. C. Kell, L. A. Thomas, N. Wooster, and W. A. Wooster, "Growth of Large Quartz Crystals," Nature, vol. 167, no. 4258, pp. 940-941, 1951/06/01 1951, doi: 10.1038/167940a0.
[9] G. Spezia, "Atti. accad. sci," Torino, vol. 40, p. 254, 1905.
[10] J. F. Alder and J. J. McCallum, "Piezoelectric crystals for mass and chemical measurements. A review," Analyst, 10.1039/AN9830801169 vol. 108, no. 1291, pp. 1169-1189, 1983, doi: 10.1039/AN9830801169.
[11] L. A. Garvie, P. Rez, J. R. Alvarez, P. R. Buseck, A. J. Craven, and R. Brydson, "Bonding in alpha-quartz (SiO2): A view of the unoccupied states," American Mineralogist, vol. 85, no. 5-6, pp. 732-738, 2000.
[12] C. Ltd, " Crystal Quartz (SiO2) Data Sheet," 2018. [Online]. Available: https://www.crystran.co.uk/optical-materials/crystal-quartz-sio2.
[13] R. W. Ward, "The constants of alpha quartz," in 14th Piezoelectric devices conference and exhibition, 1992, pp. 3-4.
[14] P. M.-O. Inc. "Crystal Quartz." https://www.pmoptics.com/quartz_crystal.html (accessed.
[15] E. Notes. "Quartz Crystal Cuts." https://www.electronics-notes.com/articles/electronic_components/quartz-crystal-xtal/crystal-resonator-cuts-at-bt-sc-ct.php (accessed.
[16] I. UniversityWafer. "Single Crystal Quartz Substrates for Research/Production." https://www.universitywafer.com/quartz-single-crystal.html (accessed.
[17] Y. Jun-Ichi, "Production and Applications of Synthetic Quartz," in Recent Advances in Mineralogy, R. Miloš Ed. Rijeka: IntechOpen, 2023, p. Ch. 7.
[18] Y. Xue, Y. Zhang, and H. Xiang, "Development and Research Progress of Crystal Oscillator," in 7th International Conference on Computing, Control and Industrial Engineering (CCIE 2023), Singapore, Y. S. Shmaliy and A. Nayyar, Eds., 2023// 2023: Springer Nature Singapore, pp. 265-279.
[19] W. J. Spencer, "Transverse Thickness Modes in BT‐Cut Quartz Plates," The Journal of the Acoustical Society of America, vol. 41, no. 4B, pp. 994-1001, 1967, doi: 10.1121/1.1910454.
[20] I. F. P. Ltd. "A short primer on AT-cut quartz crystals." https://www.iqdfrequencyproducts.com/blog/2015/06/29/a-short-primer-on-at-cut-quartz-crystals/ (accessed.
[21] T. CORPORATION. "TECHNICAL TERMINOLOGY." https://txccrystal.com/term.html (accessed.
[22] N. Bujanos, "Choosing the Right Crystal for Your Oscillator," Circuit Cellar Ink Feb, pp. 66-70, 1998.
[23] J. Curie and P. Curie, "Développement par compression de l′électricité polaire dans les cristaux hémièdres à faces inclinées," Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, 1880.
[24] W. G. Cady, "The Piezo-Electric Resonator," Proceedings of the Institute of Radio Engineers, vol. 10, no. 2, pp. 83-114, 1922, doi: 10.1109/JRPROC.1922.219800.
[25] A. Tutorial and J. R. Vig, "QUARTZ CRYSTAL RESONATORS AND OSCILLATORS," 2000.
[26] TXC. "Process." https://www.txccorp.com/process/ (accessed.
[27] I. Jauch Quartz America. "QUARTZ CRYSTAL MANUFACTURING PROCESS." https://www.jauch.com/en-US/know_how/quartz_crystal_manufacturing_process (accessed.
[28] S. Nisar, L. Li, and M. Sheikh, "Laser glass cutting techniques—A review," Journal of laser applications, vol. 25, no. 4, 2013.
[29] V. I. Kondrashov, L. A. Shitova, V. A. Litvinov, and V. V. Surkov, "Characteristics of Cutting Parameters and Their Effect on the Glass Edge Quality," Glass and Ceramics, vol. 58, no. 9, pp. 303-305, 2001/09/01 2001, doi: 10.1023/A:1013926908241.
[30] C. Gaudiuso, A. Volpe, and A. Ancona, "One-step femtosecond laser stealth dicing of quartz," Micromachines, vol. 11, no. 3, p. 327, 2020.
[31] D. J. Garibotti, "Dicing of micro-semiconductors," ed: Google Patents, 1963.
[32] H. U. Zuhlke, G. Eberhardt, and R. Ullmann, "TLS-Dicing - An innovative alternative to known technologies," in 2009 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 10-12 May 2009 2009, pp. 28-32, doi: 10.1109/ASMC.2009.5155947.
[33] D. Lewke, M. Cerezuela Barreto, K. O. Dohnke, H. U. Zühlke, C. Belgardt, and M. Schellenberger, "TLS-Dicing for SiC - Latest Assessment Results," Materials Science Forum, vol. 924, pp. 547-551, 2018, doi: 10.4028/www.scientific.net/MSF.924.547.
[34] A. R. Collins, D. Milne, C. Prieto, and G. M. O′Connor, "Thin glass processing with various laser sources," in Laser-based Micro-and Nanoprocessing IX, 2015, vol. 9351: SPIE, pp. 354-363.
[35] W. Schulz, U. Eppelt, and R. Poprawe, "Review on laser drilling I. Fundamentals, modeling, and simulation," Journal of Laser Applications, vol. 25, no. 1, p. 012006, 2013, doi: 10.2351/1.4773837.
[36] D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, "Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications," Progress in Materials Science, vol. 76, pp. 154-228, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.pmatsci.2015.09.002.
[37] C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Measurement Science and Technology, vol. 12, no. 11, p. 1784, 2001.
[38] M. Ams et al., "Investigation of Ultrafast Laser--Photonic Material Interactions: Challenges for Directly Written Glass Photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 5, pp. 1370-1381, 2008, doi: 10.1109/JSTQE.2008.925809.
[39] X. Lin, H. Chen, S. Jiang, and C. Zhang, "A Coulomb explosion theoretical model of femtosecond laser ablation materials," Science China Technological Sciences, vol. 55, pp. 694-701, 2012.
[40] N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, "A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion," Applied Physics A, vol. 81, no. 2, pp. 345-356, 2005/07/01 2005, doi: 10.1007/s00339-005-3242-0.
[41] F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, "Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials," in Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI, 2016, vol. 9740: SPIE, pp. 162-169.
[42] K. Mishchik et al., "Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses," Optics Express, vol. 25, no. 26, pp. 33271-33282, 2017.
[43] A. Yadav, H. Kbashi, S. Kolpakov, N. Gordon, K. Zhou, and E. U. Rafailov, "Stealth dicing of sapphire wafers with near infra-red femtosecond pulses," Applied Physics A, vol. 123, pp. 1-7, 2017.
[44] N. Suzuki and T. Ohba, "Suppression of backside damage in stealth dicing," in 2019 International Conference on Electronics Packaging (ICEP), 2019: IEEE, pp. 437-440.
[45] M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi, and K. Fukumitsu, "Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing," IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 3, pp. 259-265, 2007, doi: 10.1109/TSM.2007.901849.
[46] "Laser machining of transparent brittle materials: from machining strategies to applications," Opto-Electronic Advances, vol. 2, no. 1, p. 180017, 2019, doi: 10.29026/oea.2019.180017.
[47] S. M. Eaton, G. Cerullo, and R. Osellame, "Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics," in Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, R. Osellame, G. Cerullo, and R. Ramponi Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3-18.
[48] X. Yu, M. Zhang, and S. Lei, "Multiphoton Polymerization using Femtosecond Bessel Beam for Layerless 3D Printing," Journal of Micro and Nano-Manufacturing, vol. 6, 11/14 2017, doi: 10.1115/1.4038453.
[49] R. Meyer et al., "Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass," Applied Physics Letters, vol. 114, no. 20, p. 201105, 2019, doi: 10.1063/1.5096868.
[50] C. S. M. Lye, Z. Wang, and Y. C. Lam, "Multi-foci laser separation of sapphire wafers with partial thickness scanning," Micromachines, vol. 13, no. 4, p. 506, 2022.
[51] J. Bovatsek, A. Y. Arai, and F. Yoshino, "Transparent material processing with an ultrashort pulse laser," ed: Google Patents, 2013.
[52] Z. Li et al., "Stealth dicing of sapphire sheets with low surface roughness, zero kerf width, debris/crack-free and zero taper using a femtosecond Bessel beam," Optics & Laser Technology, vol. 135, p. 106713, 2021.
[53] R. Albalak, "Dicing saw devices," article from tech library of ADT Co, vol. 12, 2006.
[54] W.-J. Tsai, C.-J. Gu, C.-W. Cheng, and J.-B. Horng, "Internal modification for cutting transparent glass using femtosecond Bessel beams," Optical Engineering, vol. 53, no. 5, pp. 051503-051503, 2014.
[55] A. Industries. "Hybrid Hexapod 6-Axis Stage." https://alioindustries.com/hybrid-hexapod/ (accessed.
[56] L. SIGMAKOKI CO. "Infrared (NIR) Objective Lens / PAL-20-NIR-LC00." https://jp.optosigma.com/en_jp/pal-20-nir-lc00.html (accessed.
[57] K. CORPORATION. "Laser Scanning Confocal Microscope description of surface texture parameters." https://www.keyence.com.tw/ss/products/microscope/roughness/surface/parameters.jsp (accessed.
[58] K. C. O. AMERICA. "Laser Scanning Confocal Microscope." https://www.keyence.com/products/microscope/laser-microscope/laser_microscopes.jsp (accessed.
[59] E. Ohmura, M. Kumagai, M. Nakano, K. Kuno, K. FUKUMITASU, and H. Morita, "Analysis of processing mechanism in stealth dicing of ultra thin silicon wafer," in Proceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM21 2007.4, 2007: The Japan Society of Mechanical Engineers, p. 9D435.
[60] E. Ohmura, Y. Kawahito, K. Fukumitsu, J. Okuma, and H. Morita, "Analysis of internal crack propagation in silicon due to permeable pulse laser irradiation: study on processing mechanism of stealth dicing," in Fundamentals of Laser-Assisted Micro-and Nanotechnologies 2010, 2011, vol. 7996: SPIE, pp. 12-19.
|