參考文獻 |
Andersen, J. A., Christensen, J. M., Østberg, M., Bogaerts, A., Jensen, A. D. (2022). Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor. International Journal of Hydrogen Energy, 47(75), 32081-32091. doi:10.1016/j.ijhydene.2022.07.102
Amenaghawon, A. N., Anyalewechi, C. L., Okieimen, C. O., Kusuma, H. S. (2021) Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environment, Development and Sustainability, 23, 14324-14378.
Aramendı ́a, M. A., Benı ́tez, J. A., Victoriano Borau, V., Jime ́nez, C., Marinas, J. M., Ruiz, J. R., Urbano, F. (1998). Study of MgO and PtMgO Systems by XRD, TPR, and 1HMAS NMR. Langmuir, 15, 1192-1197.
Awad, O. I., Zhou, B., Kadirgama, K., Chen, Z., Mohammed, M. N. (2024). Nonthermal plasma-assisted catalysis NH3 decomposition for COx-free H2 production: A review. International Journal of Hydrogen Energy, 56, 452-470. doi:10.1016/j.ijhydene.2023.12.166
Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212, 17–60.
Cha, J., Lee, T., Lee, Y. J., Jeong, H., Jo, Y. S., Kim, Y., Nam, S. W., Han, J., Lee, K. B., Yoon, C. W., Sohn, H. (2021). Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition. Applied Catalysis B: Environmental, 283. doi:10.1016/j.apcatb.2020.119627
Chen, C., Fan, X., Zhou, C., Lin, L., Luo, Y., Au, C., Cai, G., Wang, X., Jiang, L. (2023). Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: Effect of CeO2 morphology. Journal of Rare Earths, 41(7), 1014-1021. doi:10.1016/j.jre.2022.05.001
Choudhary, T. V., Sivadinarayana, C., & Goodman, D. W. (2001). Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catalysis Letters, 72(3), 197-201.
El-Shafie, M., Kambara, S., Hayakawa, Y. (2021). Plasma-enhanced catalytic ammonia decomposition over ruthenium (Ru/Al2O3) and soda glass (SiO2) materials. Journal of the Energy Institute, 99, 145-153. doi:10.1016/j.joei.2021.09.001
Ertl, G. (2008). Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angewandte Chemie International Edition, 47(19), 3524-3535. doi:10.1002/anie.200800480
Gao, Y., Hu, E., Yi, Y., Yin, G., Huang, Z. (2023). Plasma-assisted low temperature ammonia decomposition on 3d transition metal (Fe, Co and Ni) doped CeO2 catalysts: Synergetic effect of morphology and co-doping. Fuel Processing Technology, 244. doi:10.1016/j.fuproc.2023.107695
Ghavam, S., Vahdati, M., Wilson, I. G., & Styring, P. (2021). Sustainable ammonia production processes. Frontiers in Energy Research, 9, 580808.
Herrera, F. A., Brown, G. H., Barboun, P., Turan, N., Mehta, P., Schneider, W. F., Hicks, J. C., Go, D. B. (2019). The impact of transition metal catalysts on macroscopic dielectric barrier discharge (DBD) characteristics in an ammonia synthesis plasma catalysis reactor. Journal of Physics D: Applied Physics, 52(22). doi:10.1088/1361-6463/ab0c58
Huang, C., Yu, Y., Yang, J., Yan, Y., Wang, D., Hu, F., Wang, X., Zhang, R., Feng, G. (2019). Ru/La2O3 catalyst for ammonia decomposition to hydrogen. Applied Surface Science, 476, 928-936. doi:10.1016/j.apsusc.2019.01.112
Jiao, F., Xu, B. (2019). Electrochemical ammonia synthesis and ammonia fuel cells. Advanced Materials, 31(31), e1805173. doi:10.1002/adma.201805173
Jimena, I. V., Korayem, A., Tsatsaronis, G., Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. Energy Conversion and Management, 291. doi:10.1016/j.enconman.2023.117294
Kim, A.R., Cha, J., Kim, J. S., Ahn, C.I., Kim, Y., Jeong, H., Choi, S. H., Nam, S. W., Yoon, C. W., Sohn, H. (2023). Hydrogen production from ammonia decomposition over Ru-rich surface on La2O2CO3-Al2O3 catalyst beads. Catalysis Today, 411-412. doi:10.1016/j.cattod.2022.08.009
Karkach, B., Tahiri, M., Haibi, A., Bouya, M., Kifani, S . M. (2023) Review on fast pyrolysis of biomass for biofuel production from date palm. Applied Sciences, 13(18), 10463.
Lan, R., Irvine, J. T., Tao, S. (2013). Synthesis of ammonia directly from air and water at ambient temperature and pressure. Scientific Reports, 3, 1145. doi:10.1038/srep01145
Lee, H., Lee, D. H., Song, Y. H., Choi, W. C., Park, Y. K., Kim, D. H. (2015). Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chemical Engineering Journal, 259, 761-770. doi:10.1016/j.cej.2014.07.128
Li, G., Zhang, H., Yu, X., Lei, Z., Yin, F., He, X. (2022). Highly efficient Co/NC catalyst derived from ZIF-67 for hydrogen generation through ammonia decomposition. International Journal of Hydrogen Energy, 47(26), 12882-12892. doi:10.1016/j.ijhydene.2022.02.046
Lu, S., Chen, L., Du, C., Sun, X., Li, X., Yan, J. (2014). Experimental study of hydrogen production from reforming of methane and ammonia assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy, 39(35), 19990-19999. doi:10.1016/j.ijhydene.2014.10.011
MacFarlane, D. R., Cherepanov, P. V., Choi, J., Suryanto, B. H. R., Hodgetts, R. Y., Bakker, J. M., Ferrero Vallana, F. M.,Simonov, A. N. (2020). A roadmap to the ammonia economy. Joule, 4(6), 1186-1205. doi:10.1016/j.joule.2020.04.004
Martinu, L., Zabeida, O., Klemberg-S, J. E. (2010). Plasma-enhanced chemical vapor deposition of functional coatings. Wiliam Andrew, Chapter 9, 392-465
McKinsey & Company (2023). Global Energy Perspective 2023: Hydrogen outlook. Website: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogen-outlook.
Meng, S., Li, S., Sun, S., Bogaerts, A., Liu, Y., Yi, Y. (2024). NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts. Chemical Engineering Science, 283. doi:10.1016/j.ces.2023.119449
Młotek, M., Perron, M., & Krawczyk, K. (2021). Ammonia decomposition in a gliding discharge plasma. Energy Technology, 9(12), 2100677.
Mostafa, E. S., Kambara, S. (2023). Recent advances in ammonia synthesis technologies: Toward future zero carbon emissions. International Journal of Hydrogen Energy, 48(30), 11237-11273. doi:10.1016/j.ijhydene.2022.09.061
Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C-R. F., Wu, G. (2018). Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental, 226(15), 162-181.
Nakamura, I., Fujitani, T. (2016). Role of metal oxide supports in NH3 decomposition over Ni catalysts. Applied Catalysis A: General, 524, 45-49. doi:10.1016/j.apcata.2016.05.020
Pinzón, M., Avilés-García, O., de la Osa, A. R., de Lucas-Consuegra, A., Sánchez, P., Romero, A. (2022). New catalysts based on reduced graphene oxide for hydrogen production from ammonia decomposition. Sustainable Chemistry and Pharmacy, 25. doi:10.1016/j.scp.2022.100615
Schüth, F., Palkovits, R., Schlögl, R., Su, D. S. (2012). Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition Energy & Environmental Science, 5(4), 6278-6289. doi:10.1039/c2ee02865d
Wang, Z. Q., Cai, Z. F., Wei, Z. (2019). Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to COx-free hydrogen. ACS Sustainable Chemistry & Engineering, 7(9), 8226-8235.
Wang, L., Yi, Y. H., Zhao, Y., Zhang, R., Zhang, J., Guo, H. (2015). NH3 decomposition for H2 generation: effects of cheap metals and supports on plasma–catalyst synergy. ACS Catalysis, 5(7), 4167-4174. doi:10.1021/acscatal.5b00728
Wang, Z. J., Zhang, H. Z., Ye, Z. B., He, G., Liao, C., Deng, J., Lei, G., Zheng, G., Zhang, K., Gou, F., Mao, X. (2024). H2 production from ammonia decomposition with Mo2N catalyst driven by dielectric barrier discharge plasma. International Journal of Hydrogen Energy, 49, 1375-1385. doi:10.1016/j.ijhydene.2023.06.173
Wappler, M., Unguder, D., Lu, X., Ohlmeyer, H., Teschke, H., Lueke, W. (2022). Building the green hydrogen market – Current state and outlook on green hydrogen demand and electrolyzer manufacturing. International Journal of Hydrogen Energy, 47(79), 33551-33570. doi:10.1016/j.ijhydene.2022.07.253
Yi, Y., Wang, L., Guo, Y., Sun, S., Guo, H. (2018). Plasma‐assisted ammonia decomposition over Fe–Ni alloy catalysts for COx‐Free hydrogen. AIChE Journal, 65(2), 691-701. doi:10.1002/aic.16479
Yin, S. F., Xu, B. Q., Zhou, X. P., Au, C. T. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Applied Catalysis A: General, 277(1-2), 1-9. doi:10.1016/j.apcata.2004.09.020
Zhang, X., Cha, M. S. (2023). Ammonia cracking for hydrogen production using a microwave argon plasma jet. Journal of Physics D: Applied Physics, 57(6). doi:10.1088/1361-6463/ad0988
Zhu, X., Liu, J., Hu, X., Zhou, Z., Li, X., Wang, W., Wu, R., Tu, X. (2022). Plasma-catalytic synthesis of ammonia over Ru-based catalysts: Insights into the support effect. Journal of the Energy Institute, 102, 240-246. doi:10.1016/j.joei.2022.02.014
行政院環境保護署,溫室氣體排放統計(2022)
經濟部能源局,國際再生能源發展趨勢與政策(2021)
經濟部技術處,全球氫氣生產方式的發展與趨勢(2021)
德國在臺協會,再生能源的拓展(2020)
風險社會與政策研究中心,台灣氫能發展實務(2022)
經濟部能源署,大型氫氣儲存技術簡介(2022)
經濟部,臺灣 2050 淨零轉型「氫能」關鍵戰略行動計畫(2023) |