參考文獻 |
Agraniotis Michalis, Nikolopoulos Nikos, Nikolopoulos Aris, Grammelis Panagiotis, Kakaras Emmanuel. (2010). Numerical investigation of Solid Recovered Fuels’ co-firing with brown coal in large scale boilers – Evaluation of different co-combustion modes. Fuel, 89, 3693-3709.
Balampanis D.E., Pollard S.J.T., Simms N., Longhurst P., Coulon F., Villa R. (2010). Residues characterisation from the fluidised bed combustion of East London’s solid recovered fuel. Waste Management, 30, 1318-1324.
Basu Prabir, Butler James, Leon Mathias A. (2011). Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renewable Energy, 36, 282-288.
Chae Jong Seong, Kim Seok Wan, Ohm Tae In. (2020). Combustion Characteristics of Solid Refuse Fuels from DifferentWaste Sources. Renewable Materials, 8, 789-799.
Chyang Chien-Song, Han Yun-Long, Wu Li-Wei, Wan Hou-Peng, Lee Hom-Ti, Chang Ying-Hsi. (2010). An investigation on pollutant emissions from co-firing of RDF and coal. Waste Managemen, 30, 1334-1340.
Davidssona K.O., Åmanda L.E., Steenarib B.M., Elleda A.-L., Eskilssonc D., Lecknera B. (2008). Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler. Chemical Engineering Science, 63, 5314-5329.
Demirbas Ayhan. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31, 171-192.
Garg A., Smith R., Hill D., Longhurst P.J., Pollard S.J.T., Simms N.J. (2009). NAn integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste. Waste Management, 29, 2289-2297.
Gehrmann Hans-Joachim, Seifert Helmut, Beckmann Michael, Glorius Thomas. (2012). Substitute fuels in power plant technology. Chemie Ingenieur Technik, 84, 1-15.
Giere´ Reto, Smith Katherine, Blackford Mark. (2006). Chemical composition of fuels and emissions from a coal + tire combustion experiment in a power station. Fuel, 85, 2278-2285.
Gisi Sabino De, Chiarelli Agnese, Tagliente Luca, Notarnicola Michele. (2018). Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant. Waste Management, 73, 271-286.
Gungor Afsin. (2013). Simulation of co-firing coal and biomass in circulating fluidized beds. Energy Conversion and Management, 65, 574-579.
Hariana., Prabowo, Hilmawan Edi, Kuswa Fairuz Milky, Darmawan Arif, Aziz Muhammad. (2012). A comprehensive evaluation of cofiring biomass with coal and slagging-fouling tendency in pulverized coal-fired boilers.
Hernandez-Atonal Francisco D., Ryu Changkook, Sharifi Vida N., Swithenbank Jim. (2007). Combustion of refuse-derived fuel in a fluidised bed. Chemical Engineering Science, 62, 627-635.
Hilber Th., Thorwarth H., Stack-Lara V., Schneider M., Maier J., Scheffknecht G. (2007). Fate of mercury and chlorine during SRF co-combustion. Fuel, 86, 1935-1946.
Iacovidou Eleni, Hahladakis John, Deans Innes, Velis Costas, Purnell Phil. (2017). Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact of on multi-dimensional resource recovery value. Waste Management, 73, 535-545.
Isaac Kerina, Bada Samson O. (2020). The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal. Heliyon, 6, e03309.
Khalf A., Trouve G., Delobel R., Delfosse L. (2000). Correlation of CO and PAH emissions during laboratory-scale incineration of wood waste furnitures. J. Anal. Appl. Pyrolysis, 56, 243-262.
Landsberger S., Chichester D.L. (1995). Characterization of household plastics for heavy metals using neutron activation analysis, Journal of radioanalytical and nuclear chemistry, 192(2), pp.289-297.
Leckner Bo, Lind Fredrik. (2020). Combustion of municipal solid waste in fluidized bed or on grate – A comparison. Waste Management, 109, 94-108.
Lee Jong-Min, Kim Down-Won, Kim Jae-Sung, Na Jeong-Geol, Lee See-Hoon. (2010). Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler. Energy, 35, 2814-2818.
Lonardo Maria Chiara Di, Franzese Maurizio, Costa Giulia, Gavasci Renato, Lombardi Francesco. (2015). The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
Lu Liang, Ismail T.M., Jin Yuqi, El-Salam M., Kunio Yoshikawa. (2016). Numerical and experimental investigation on co-combustion characteristics of hydrothermally treated municipal solid waste with coal in a fluidized bed. Fuel Processing Technology, 154, 52-65.
Mahmoudi Shiva, Baeyens Jan, Seville Jonathan P.K. (2010). NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. biomass and bioenergy, 34, 1393-1409.
Maj Izabella, Kalisz Sylwester, Wejkowski Robert, Pronobis Marek, Gołombek Klaudiusz. (2022). High-temperature corrosion in a multifuel circulating fluidized bed (CFB) boiler co-firing refuse derived fuel (RDF) and hard coal. Fuel, 324, 124749.
Martignon Giovanna Pinuccia. (2020). Trends in the use of solid recovered fuels. IEA Bioenergy, 36, 2020-01.
Montané Daniel, Abelló Sònia, Farriol Xavier, Berrueco César. (2013). Volatilization characteristics of solid recovered fuels (SRFs). Fuel Processing Technology, 113, 90-96.
Mylläri Fanni, Karjalainen Panu, Taipale Raili, Aalto Pami, Häyrinen Anna, Rautiainen Jani, Pirjola Liisa, Hillamo Risto, Keskinen Jorma, Rönkkö Topi. (2017). Physical and chemical characteristics of flue-gas particles in a large pulverized fuel-fired power plant boiler during co-combustion of coal and wood pellets. Combustion and Flame, 176, 554-566.
Nasrullah Muhammad, Hurme Markku, Oinas Pekka, Hannula Janne, Vainikka Pasi. (2017). Influence of input waste feedstock on solid recovered fuel production in a mechanical treatment plant. Fuel Processing Technology, 163, 35-44.
Niu Yanqing, Du Wenzhi, Xu Weigang, Liu Yuanyi, Xiong Yingying, Hui Shien. (2014). Experimental study on the coexistent dual slagging in biomass-fired furnaces: Alkali- and silicate melt-induced slagging. Waste Managemen, 30, 1334-1340.
Niu Yanqing, Tan Hongzhang, Wang Xuebin, Liu Zhengning, Liu Haiyu, Liu Yang, Xu Tongmo. (2010). Study on fusion characteristics of biomass ash. Bioresource Technology, 101, 9373-9381.
Park Jae Hyeok, Lee Dong-Ho, Han Keun-Hee, Shin Jong-Seon, Bae Dal-Hee, Shim Tae-Earn, Lee Jeong Hwan, Shun Dowon. (2019). Effect of chemical additives on hard deposit formation and ash composition in a commercial circulating fluidized bed boiler firing Korean solid recycled fuel. Fuel, 236, 792-802.
Passamani Giorgia, Ragazzi Marco, Torretta Vincenzo. (2016). Potential SRF generation from a closed landfill in northern Italy. Waste Managemen, 47, 157-163.
Patel C., Lettieri P., Germanà A. (2012). Techno-economic performance analysis and environmental impact assessment of small to medium scale SRF combustion plants for energy production in the UK. Process Safety and Environmental Protection, 90, 255-262.
Peters Jens, May Jan, Ströhle Jochen, Epple Bernd. (2020). Flexibility of CFB Combustion: An Investigation of Co-Combustion with Biomass and RDF at Part Load in Pilot Scale. Energies, 13, 4665.
Priyanto Dedy Eka, Matsunaga Yasuo, Ueno Shunichiro, Kasai Hidekazu, Tanoue Tatsurou, Mae Kazuhiro, Fukushima Hitoshi. (2017). Co-firing high ratio of woody biomass with coal in a 150-MW class pulverized coal boiler: Properties of the initial deposits and their effect on tube corrosion. Fuel, 208, 714-721.
Pronobis Marek. (2005). Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass and Bioenergy, 28, 375-383.
Pronobis Marek. (2006). The influence of biomass co-combustion on boiler fouling and efficiency. Fuel, 85, 474-480.
Reinmöller Markus, Schreiner Marcus, Guhl Stefan, Neuroth Manuela, Meyer Bernd. (2019). Ash behavior of various fuels: The role of the intrinsic distribution of ash species. Fuel, 253, 930-940.
Ruth Lawrence A. (1998). Energy from municipal solid waste : A comparison with coal combustion technology. Energy Combust, 24, 545-564.
Sahu Pradeep, Prabu V. (2021). Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems. Energy, 233, 121053.
Samolada M.C., Zabaniotou A.A. (2014). Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus. Resources. Conservation and Recycling, 83, 34-43.
Savolainen Kati. (2003). Co-firing of biomass in coal-fired utility boilers. Applied Energy, 74, 369-381.
Sever Akdag A., Atımtay A., Sanin F.D. (2016). Comparison of fuel value and combustion characteristics of two different RDF samples. Waste Managemen, 47, 217-224.
Stenberg Viktor, Ryd´en Magnus, Lind Fredrik. (2023). Evaluation of bed-to-tube heat transfer in a fluidized bed heat exchanger in a 75 MWth CFB boiler for municipal solid waste fuels. Fuel, 339, 127375.
Szydełko Arkadiusz, Ferens Wiesław, Rybak Wiesław. (2020). The effect of mineral additives on the process of chlorine bonding during combustion and co-combustion of Solid Recovered Fuels. Waste Management, 102, 624-634.
Tan Peng, Ma Lun, Xia Ji, Fang Qingyan, Zhang Cheng, Chen Gang. (2017). Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts. Energy, 119, 392-399.
Tchobanoglous, G., Thesen, H., Vigil, S.A., (1993). Integrated solid waste management, Mcgraw-Hill International Edition, pp. 749-750.
Teixeira Paula, Lopes Helena, Gulyurtlu Ibrahim, Lapa Nuno, Abelha Pedro. (2012). Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed. Biomass and Bioenergy, 39, 192-203.
Tillman D.A. (2000). Biomass coring: the technology, the experience, the combustion consequences. Biomass and Bioenergy, 19, 365-384.
Tyagi Vinay Kumar, Kapoor Aparna, Arora Pratham, Banu J. Rajesh, Das Sukanya, Pipesh Shubham, Kazmi A.A. (2021). Mechanical-biological treatment of municipal solid waste: Case study of 100 TPD Goa plant, India. Journal of Environmental Management, 292, 112741.
Vainio Emil, Yrjas Patrik, Zevenhoven Maria, Brink Anders, Laurén Tor, Hupa Mikko, Kajolinna Tuula, Vesala Hannu. (2013). The fate of chlorine, sulfur, and potassium during co-combustion of bark, sludge, and solid recovered fuel in an industrial scale BFB boiler. Fuel Processing Technology, 105, 59-68.
Velis C. A., Longhurst P. J., Drew G. H., Smith R., Pollard S. J. T. (2011). Production and Quality Assurance of Solid Recovered Fuels Using Mechanical—Biological Treatment (MBT) of Waste: A Comprehensive Assessment. Critical Reviews in Environmental Science and Technology, 40:12, 979-1105.
Velis Costas, Wagland Stuart, Longhurst Phil, Robson Bryce, Sinfield Keith, Wise Stephen., Pollard Simon. (2012). Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality. Environ. Sci. Technol, 46, 1923-1931.
Viczek S.A., Aldrian A., Pomberger R., Sarc R. (2020). Determination of the material-recyclable share of SRF during co-processing in the cement industry. Resources, Conservation & Recycling, 156, 104696.
Wagland S.T., Kilgallon P., Coveney R., Garg A., Smith R., Longhurst P.J., Pollard S.J.T., Simms N. (2011). Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor. Waste Management, 31, 1176-1183.
Wan Hou-Peng, Chang Ying-Hsi, Chien Wen-Cheng, Lee Hom-Ti, Huang C.C. (2008). Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler. Fuel, 87, 761-767.
Wikstrom E., Marklund S. (2001). The influence of level and chlorine source on the formation of mono- to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste. Chemosphere, 43, 227-234.
Wu Hao., Glarborg Peter., Frandsen Flemming Jappe., Johansen Kim Dam. (2013). Trace elements in co-combustion of solid recovered fuel and coal. Fuel Processing Technology, 105, 212-221.
Zevenhoven-Onderwater M., Blomquist J.-P., Skrifvars B.-J., Backman R., M Hupa M. (2000). The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion. Fuel, 79, 1353-1361.
Zuwala Jaroslaw, Sciazko Marek. (2010). Full-scale co-firing trial tests of sawdust and bio-waste in pulverized coal-fired 230 t/h steam boiler. biomass andbioenergy, 34, 1165-1174.
台灣電力公司綜合研究所「火力電廠SCR脫硝觸媒性能檢測與品質管理」,(2019)。
張慶源、李元陞、吳照雄、林法勤、謝哲隆、陳奕宏、張家驥「生質燃料應用評估與示範」,行政院環境保護署環境檢驗所,(2013)。
許宏銘「模擬都市固體廢棄物衍生燃料及燃煤共同燃燒之污染物排放特性研究」,逢甲大學碩士論文,(2004)。
郭麗雯「研習生質燃料發電技術」,台灣電力公司綜合研究所,(2015)。
陳盛健、高宏亮、余以雄、陳吉春「垃圾衍生性燃料(RDF)的製備及應用」,節能環保技術, pp. 27~29,(2004)。
黃聖賢「垃圾衍生燃料再利用方式探討」,中興工程 第96期,pp. 85~94,(2007)。
新竹縣政府環境保護局「新竹縣多元垃圾處理計畫可行性評估與先期規劃作業計畫」,(2019)。
經濟部「經濟部事業廢棄物再利用管理辦法」,(2024)
經濟部工業局「生質能暨環保產業推動計畫」,(2020)
經濟部工業局「臺灣生質能暨環保產業調查分析報告」,(2019)。
經濟部工業局「廢棄資源回收與處理設備技術手冊及案例彙編」,(2003)。
萬皓鵬,李宏台「廢棄物衍生燃料的使用」,工業技術研究院能源與環境研究所,科學發展450期 pp. 34~43,(2010)。
謝清泉「雲林縣設置機械生物處理系統(MBT)前置規畫計畫國參訪出國報告」,(2017)。
韓佳佑,陳治均「生質燃料與煤炭混燒對我國電力結構影響研究」,台灣能源期刊第六卷第二期 pp. 165~183,(2019)。
蘇黃清「紡織污泥處理回收再利用產業分析」,國立中央碩士論文,(2016)。
行政院環境保護署「111年事業廢棄物申報量統計報告」,(2024)。
行政院環境保護署「事業廢棄物清理計畫書審查作業參考指引」,(2024)。 |