以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:126 、訪客IP:3.145.82.50
姓名 鐘寶諹(CHENG POH YANG) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 混氣放電線切割加工 N-Type 單晶碳化矽之研究
(Research on N-Type Single Crystal Silicon Carbide Cutting By Using Gas Mixed Wire Electrical Discharge Machining)相關論文
★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究 ★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究 ★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2029-8-23以後開放) 摘要(中) 本論文針對混氣放電線切割加工 N-Type 單晶碳化矽進行分析與探討,
並研究不同電源參數、線參數、工件參數及混氣氣泡對加工特性與成果之
影響度關係,期望開發出高產能且高品質之線放電切割碳化矽製程。本論
文採用 100μm ,200μm 以及 250μm直徑之黃銅線為線電極,藉由電壓源施加電壓脈衝,SiC 晶圓和單線電極之間會產生放電,加工時將 SiC 晶圓試片浸入去離子水中進行混氣 WEDM 切割,過程中可即時控制加工參數。
透過各種不同參數反覆進行實驗加工得出較佳參數,再使用其較佳參數進
行加工。經由單因子的參數加工後,觀察到伺服電壓及進給速率不僅是影
響切口寬度 (Kerf Loss) ,並接連影響加工速度。以 100μm 之黃銅線已可加工出最小槽寬結果為 106 µm,並於參數調整下可於 38 秒加工 30 mm 長之槽道加工。以類比近似法針對 EDS Line Scan結果所量測之放電表面影響區厚度約為 8μm 以內,最小可達 3μm。經線切割放電加工後所得之表面粗糙度結果為 Ra = 0.4396 µm。在相同加工距離下矽晶圓碇採用混氣放電線切割加工總時間,比之無混氣加工結果以縮減7.8 %的消耗時間達到更快速的完成加工 。接著以相同加工距離下,採用混氣放電線切碳化矽晶圓碇、加工總時間比無混氣加工時間快了 16.46 % 。摘要(英) In this study, analyzes and discusses the gas-discharge wire cutting processing of N-Type single crystal silicon carbide, and studies the influence of different power supply parameters, wire parameters, workpiece parameters and
gas-mixed bubbles on the processing characteristics and quality. Our goal is to develop a high-performance, high-yield and high-quality wire discharge cutting silicon carbide process. In this research, uses 100 μm and 200 μm diameter brass wires as wire electrodes. A voltage pulse is applied by a voltage source, and a discharge will occur between the SiC wafer and the single wire electrode. During processing, the SiC wafer test piece are immersed in deionized water and then performed by using a mixture gas WEDM cutting, the processing parameters can be controlled in real time during the process.
Through repeated experimental processing with various parameters, the optimal parameters are obtained, and then the optimal parameters are used for processing. After single-factor parameter processing, it was observed that the servo voltage and feed rate not only affect the kerf width (Kerf Loss) but also continuously affect the processing speed. The minimum kerf width can be processed with 100 μm brass wire, which is 106 μm. With parameter adjustment, a 30 mm long kerf width can be processed in 38 seconds. The thickness of the discharge surface affected area measured based on the EDS Line Scan results using the analog approximation method is approximately within 8 μm, with a minimum of 3 μm. The surface roughness result obtained after wire cutting EDM is Ra = 0.4396 µm. At the same processing distance, the total processing time of the silicon wafer using mixed gas discharge wire cutting is reduced by 7.8% compared to the result of non-mixed gas processing, achieving faster completion of processing. Then, the silicon carbide wafer was cut using air-mixed discharge wire at the same processing distance, and the total processing time was 16.46% faster than the result of non-mixed gas processing.關鍵字(中) ★ 放電加工
★ 線放電加工
★ 碳化矽晶碇
★ 文丘里效應關鍵字(英) ★ Electrical discharge machining
★ Wire electrical discharge machining
★ Silicon carbide ingot
★ Venturi effect論文目次 目 錄
摘 要 ....................................I
ABSTRACT....................................II
誌謝.........................................III
目 錄.......................................IV
圖目錄........................................VI
表目錄........................................IX
第一章 緒論....................................1
1-1 研究動機與目的.............................1
1-2 文獻回顧...................................2
1-3 論文架構...................................12
第二章 基礎理論.................................13
2-1 放電加工原理................................13
2-1-1 放電加工材料移除機制.......................15
2-2 放電線切割加工原理...........................17
2-2-1 混氣放電線切割材料移除機制..................19
2-3 文丘里效應 ( Venturi effect )................21
2-4 伯努利定律...................................23
第三章 實驗設備與材料.............................24
3-1 實驗方法.....................................24
3-2 基礎實驗相關設備..............................25
3-3 實驗材料.....................................32
3-4 實驗流程與方法................................34
3-4-1 混氣放電線切割加工流程.......................37
第四章 加工模擬...................................38
4-1 模型描述......................................38
4-2 模擬絕對水壓與粒子追蹤流場......................39
第五章 結果與討論..................................41
5-1 不同加工參數對碳化矽晶圓片之影響.................41
5-1-1 加工參數對槽寬之影響..........................41
5-1-2 加工參數對表面粗糙度之影響....................50
5-1-3 加工參數對時間之影響..........................55
5-1-4 加工後熱影響區之觀察..........................57
5-2 不同加工參數對6吋SIC碳化矽晶碇加工之影響..........59
5-2-1 加工參數對6吋SiC碳化矽晶碇表面粗糙度之影響......59
5-2-2 加工參數對6吋SiC碳化矽晶碇時間之影響............62
5-2-3 加工後6吋SiC碳化矽晶圓片3D表面輪廓量測..........64
5-3 混氣線放電加工對碳化矽晶碇加工之影響...............68
5-3-1 混氣線放電加工對矽晶碇加工時間之影響(前置實驗)....68
5-3-2 混氣線放電加工對碳化矽晶碇加工時間之影響..........73
第六章 結論..........................................78
未來展望.............................................80
參考文獻.............................................81參考文獻 [1]S. Verma and S. Singh, “Experimental investigation and prediction modelling of slicing speed and surface roughness during wafer slicing using WEDM,” Engineering Research Express, vol. 4, no. 3, p. 035028, Aug. 2022.
[2]T. Bergs, M. Olivier, T. Herrig, and A. Klink, “Experimental Analysis on Wire Electrical Discharge Machinability of Electrically Conductive Silicon Carbide and Nitride as Function of Different Oil-Based Dielectrics,” Procedia CIRP, vol. 95, pp. 290–295, Jan. 2020.
[3]J. Punturat, V. Tangwarodomnukun, C. Dumkum, “Surface characteristics and damage of monocrystalline silicon induced by WEDM,” Applied Surface Science, vol. 320, pp. 83-92, Nov .2014.
[4]K. Joshi, U. Bhandarkar, I. Samajdar, and S. Joshi, “Micro-structural characterization of thermal damage on silicon wafers sliced using wire-EDM,” Journal of Manufacturing Science and Engineering, vol. 140, Mar. 2018
[5]M. A. Singh, K. Joshi, O. Hanzel, R. Singh, P. Sajgalik, and D. Marla, “Influence of open voltage and servo voltage during Wire-EDM of silicon carbides,” Procedia CIRP, vol. 95, pp. 285–289, Jan. 2020.
[6]S. Clijsters, K. Liu, D. Reynaerts, and B. Lauwers, “EDM technology and strategy development for the manufacturing of complex parts in SiSiC,” Journal of Materials Processing Technology, vol. 210, no. 4, pp. 631–641, Mar. 2010.
[7]M. A. Singh, K. Joshi, O. Hanzel, R. K. Singh, P. et al. “Identification of wire electrical discharge machinability of SiC sintered using rapid hot pressing technique,” Ceramics International, vol. 46, no. 11, Part A, pp. 17261–17271, Aug. 2020
[8]M. A. Singh, K. Joshi, O. Hanzel, R. Singh, P. Sajgalik, and D. Marla, “Influence of open voltage and servo voltage during Wire-EDM of silicon carbides,” Procedia CIRP, vol. 95, pp. 285–289, Jan. 2020.
[9]M. A. Singh, K. Joshi, O. Hanzel, R. Singh, P. Sajgalik, and D. Marla, “Influence of open voltage and servo voltage during Wire-EDM of silicon carbides,” Procedia CIRP, vol. 95, pp. 285–289, Jan. 2020.
[10]V. Kavimania, K.Soorya Prakashb, Titus Thankachanc, “Multi-objective optimization in WEDM process of graphene– SiC-magnesium composite through hybrid technique,” Measurement , vol 145, pp.335-349, Oct 2019.
[11]W. Wang, Z.D. Liu, Z.J. Tian, Y.H. Huang, Z.X. Liu, “High efficiency slicing of low resistance silicon ingot by wire electrolytic-spark hybrid machining,” Journal of Materials Processing Technology, vol. 209, pp.3149–3155, 2009.
[12]Y. Okamoto, T. Ikeda, H. Kurihara, A. Okada, M. Kido, “Control of Kerf Width in Multi-wire EDM Slicing of Semiconductors with Circular Section,” Procedia CIRP, vol. 68, pp.100 – 103, 2018.
[13]A. Okada, T. Konishi, Y. Okamoto, and H. Kurihara, “Wire breakage and deflection caused by nozzle jet flushing in wire EDM,” CIRP Annals, vol. 64, no. 1, pp. 233–236, Jan. 2015.
[14]G. Dongre, S. Zaware, U. Dabade, and S. S. Joshi, “Multi-objective optimization for silicon wafer slicing using wire-EDM process,” Materials Science in Semiconductor Processing, vol. 39, pp. 793–806, Nov. 2015.
[15]W. Y. Peng and Y. S. Liao, “Study of electrical discharge machining technology for slicing silicon ingots,” Journal of Materials Processing Technology, vol. 140, no. 1, pp. 274–279, Sep. 2003.
[16]M. Ogawa, K. Mine, S. Fuchiyama, Y. Tawa, and T. Kato, “Development of Multi-Wire Electric Discharge Machining for SiC Wafer Processing,” Materials Science Forum, vol. 778–780, pp. 776–779, Feb. 2014.
[17]Y. Zhao, M. Kunieda, K. Abe, “Study of EDM cutting of single crystal silicon carbide,” Precision Engineering, vol. 38, pp.92– 99, 2014.
[18]M. B. Jensen, P. L. Pedersen, L. D. M. Ottosen, et al. “In silico screening of venturi designs and operational conditions for gas-liquid mass transfer applications,” Chemical Engineering Journal, vol. 383, Mar 2020.
[19]C. H. Lee, H. Choi, D. W. Jerng, et al. “Experimental investigation of microbubble generation in the venturi nozzle,” International Journal of Heat and Mass Transfer, vol. 136, pp.1127–1138, 2019.
[20]M. Li, A. Bussonnière, M. Bronson, et al. “Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles,” Minerals Engineering, vol. 132, pp.268–274, 2019.
[21]A. Gordiychuk, M. Svanera, S. Benini, et al. “Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator,” Experimental Thermal and Fluid Science, vol. 70, pp.51–60, 2016.
[22]J. Huang, L. Sun, Z. Mo, et al. “Experimental investigation on the effect of throat size on bubble transportation and breakup in small Venturi channels,” International Journal of Multiphase Flow, vol. 142 pp.103737, 2021.
[23]L. Zhao, L. Sun, Z. Mo, et al. “Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles,” International Journal of Multiphase Flow, vol. 114 pp.192–206, 2019.指導教授 洪榮洲(Hung, Jung-Chou) 審核日期 2024-8-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare