摘要(英) |
This study proposes using Electrochemical Machining (ECM) combined with a magnetic field generated by permanent ring magnets to assist in removing burrs from metal workpieces′ micro-holes and polishing the hole wall surfaces. The research aims to evaluate the surface flatness of the workpieces after machining. Experimental data includes surface roughness (Ra), hole expansion amount, surface morphology, and oxidation film measurements. The study seeks to establish appropriate machining parameters for subsequent research on array hole processing, ultimately aiming for high productivity and quality in array hole electrochemical machining and inner wall polishing processes. The experiments will use SUS 304 stainless steel as the primary material for processing research, focusing on process planning and parameter studies required for single-hole and array hole electrochemical polishing. To meet various product requirements for burr removal and inner wall polishing of array holes, this research will propose an electrochemical machining method for polishing the inner walls of array micro-features on stainless steel workpieces. Given the numerous small-diameter array micro-holes, the study will involve designing and fabricating electrode molds and establishing finite element models to analyze fluid flow and electric fields. It will investigate the effects of various parameters, such as the presence and intensity of the magnetic field, magnetic field direction, electrolyte flow rate, machining voltage, and current, on machining outcomes to achieve high precision and improved efficiency. From the experimental results, it is evident that in single-hole parameter experiments, there is a close relationship between magnetic field strength and electric field intensity during machining. Higher magnetic field strength and machining voltage enhance polishing efficiency. In array hole machining experiments, adding a magnetic field improved hole diameter uniformity by 33.3% compared to experiments without a magnetic field, and the surface roughness of the hole walls improved by 6.45%. Additionally, this machining method is expected to significantly reduce the development cycle of workpiece fixtures, enhance machining quality, and further meet the characteristics of large-scale rapid production, high efficiency, and high productivity, providing strong support for research and development in electrochemical micro-hole machining technology. |
參考文獻 |
參考文獻
[1] J. Cheng, R. Kang, Z. Dong, S. Gao, “A new polishing method for complex structural parts Moist particle”, Electrochem. Commun. 150(2023)107475
[2] M. Datta, D. Landolt, “Fundamental aspects and applications of electrochemical,” Electrochimica. Acta. 45 (2000) 2535-2558,
[3] 沈哲墉,超音波輔助電化學加工微孔陣列之研究, 國立中央大學, 2020.
[4] M.H. Wang, D. Zhu, “Fabrication of multiple electrodes and their application for micro-holes array in ECM”, Int. J. Adv. Manuf. Technol. 41 (2009) 42-47.
[5] K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro-Physical and Chemical Processes”, CIRP Ann-Manuf. Technol. 55 (2006) 643-666.
[6] S. Skoczypiec, “Discussion of ultrashort voltage pulses electrochemical micromachining: a review”, Int. J. Adv. Manuf. Technol. 87 (2016) 177-187.
[7] B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, Int. J. Mach. Tools Manuf. 44 (2004) 1577-1589.
[8] B. Bhattacharyya, B. Doloi, P.S. Sridhar, “Electrochemical micro-machining: new possibilities for micro-manufacturing”, J. Mater. Process. Technol. 113 (2001) 301-305.
[9] T. Koyano, A. Hosokawa, T. Furumoto, “Analysis of electrochemical machining process with ultrashort pulses considering stray inductance of pulse power supply”, J. Adv. Mech. Des. Syst. Manuf. 12 (2018) JAMDSM0098-JAMDSM0098.
[10] L. Xu, J. Wang, C. Zhao, “Electrochemical Micromachining Using Real Pulse Signals”, J. Electrochem. Soc. 168 (2021) 083504.
[11] C. Zhang, “Effects of a Magnetic field Field on the Machining Accuracy for the Electrochemical Drilling of Micro Holes”, Int. J. Electrochem. Sci. (2020) 1148-1159.
[12] I. Mogi, “Electrochemical studies in steady high magnetic field fields”, Phys. B Condens. Matter. 216 (1996) 396-398.
[13] Z. Fan, T. Wang, L. Zhong, “The mechanism of improving machining accuracy of ECM by magnetic field field”, J. Mater. Process. Technol. 149 (2004) 409-413.
[14] B.J. Ma, Z.J. Fan, D.J. Stephenson, “Influence of Magnetic field Field Distribution on ECM Process”, Key Eng. Mater. 339 (2007) 50-58.
[15] V. Gatard, J. Deseure, M. Chatenet, “Use of magnetic field fields in electrochemistry: A selected review”, Curr. Opin. Electrochem. 23 (2020) 96-105.
[16] L. Tang, W.M. Gan, “Experiment and simulation study on concentrated magnetic field field-assisted ECM S-03 special stainless steel complex cavity”, Int. J. Adv. Manuf. Technol. 72 (2014) 685-692.
[17] D. Baczyzmalski, F. Karnbach, X. Yang, G. Mutschke, M. Uhlemann, K. Eckert, C. Cierpka, “On the Electrolyte Convection around a Hydrogen Bubble Evolving at a Microelectrode under the Influence of a Magnetic field Field”, J. Electrochem. Soc. 163 (2016) E248.
[18] S. Ayyappan, K. Sivakumar, M. Kalaimathi, “Electrochemical machining of 20MnCr5 alloy steel with magnetic field flux assisted vibrating tool”, J. Mech. Eng. Sci. 231 (2016) 1956-1965.
[19] L. Long, M.A. Baoji, “Effect of magnetic field field on the electrochemical machining localization”, Int. J. Adv. Manuf Technol.(2019) 949-956.
[20] L. Long, M.A. Baoji, W. Ruifeng, D. Lingqi, “The coupled effect of magnetic field field, electric field, and electrolyte motion on the material removal amount in electrochemical machining”, Int. J. Adv. Manuf. Technol. 91 (2017) 2995-3006.
[21] L. Long, M.A. Baoji, “Effect of magnetic field field on anodic dissolution in electrochemical machining”, Int. J. Adv. Manuf. Technol. 94 (2018) 1177-1187.
[22] C. Bradley, J. Samuel, “Controlled Phase Interactions Between Pulsed Electric Fields, Ultrasonic Motion, and Magnetic field Fields in an Anodic Dissolution Cell”, J. Manuf. Sci. Eng. 140 (2018) 041010.
[23] S. R. Peruri, P.K. Chaganti, “A review of magnetic field‑assisted machining processes”, J. Braz. Soc. Mech. Sci. Eng. 41 (2019) 1-17.
[24] 胡啟章,電化學原理與方法,五南出版社,2002。
[25] J.A. McGeough, “Principles of Electrochemical Machining”, Chapman and Hall, London, 1974.
[26] 張朝洋,朱荻,納秒脈衝電流提高微細電化學加工精度的研究, 中國機械工程,Vol. 19,pp1716-1723,2008。
[27] 張遼遠,劉堯,電化學加工微電極的工藝研究,兵工學報,Vol.26,pp129-132,2005。
[28] 朱樹敏,電化學加工(ECM)及相關特種加工工藝技術,電化學加工(ECM)及相關特種加工工藝技術研討會,台大慶齡工業研究中心,1997。
[29] A. Gołąbczak, A. Konstantynowicz, M. Gołąbczak, “Comparative analysis of the surface roughness parameters due to the machining uniformity”, DEFECT DIFFUS FORUM. 367(2016) 25-33. |