博碩士論文 111327015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.140.186.218
姓名 趙昱安(Yu-An Jhao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 一種簡易旋轉式LED曝光裝置的設計與實作
相關論文
★ 輝度與色彩均勻化之發光二極體直下式背光模組應用設計★ 薄型化LCD直下式背光模組設計
★ 非對稱型光分佈的發光二極體照明裝置之研究★ 應用平行光互連技術於40Gb/s的光收發次模組之封裝技術
★ 大尺寸發光二極體側光式背光模組散熱技術★ 灰化製程對鉻及氧化銦錫接觸阻抗之影響
★ 導光式發光框條的光學設計與驗證★ 直下式LED液晶觸控顯示器之研究
★ 全周光裝飾型LED燈泡之研究★ 卷對卷技術應用於凹形微透鏡膜製造之分析
★ 複合式多波長驗鈔裝置探討★ 液晶顯示器品質提升之研究
★ 在微影製程中旋轉塗佈實驗之正型光阻減量的研究★ 一種應用於特定工程圖表影像的文字智慧辨識與提取之技術研究
★ 寬頻光方向耦合器使用數種權重函數之結構最佳化設計★ 線上近紅外線穿透光檢測系統應用於不織布製程設備之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-24以後開放)
摘要(中) 本研究為了設計出實體的簡易旋轉式LED曝光裝置,我們使用了虛實整合的概念,建立一套曝光機演算模型。首先將LED的照度分布函數化,利用數學軟體將LED進行照度與位移疊加,並將曝光機模型依實作要求的規格進行設計。透過演算模型可以去驗證旋轉式曝光機相比於直曝式曝光機所改善的特點,同時在旋轉式曝光機中考慮到邊界效應,這導致曝光結果不佳需要做調整。為了達成設計目標,經過調整LED排列方式將曝光均勻度≧90%。此外我們使用光學模擬軟體來驗證演算模型的準確性,在軟體建立曝光機模型進行光線追跡,得到模擬結果與演算結果差僅為3%。
本研究在進行簡易曝光機實作設計前,考慮到節能、環保的議題,在設計曝光機相關元件時,盡量去使用再生材料或二次元件來建構,透過手工製造與組裝出簡易旋轉式LED曝光來驗證。並且因安全考量將 UV-LED替換成白光LED進行後續實驗。此外本研究選擇高功率LED對散熱的要求高,若因高溫產生的積熱會使LED衰減,因此我們進行光源承載盤的散熱設計,並使用熱流軟體進行散熱模擬。
在曝光機相關零組件設計過程中,由於承載盤上安裝準直光源模組,若有中心偏移或角度偏移都會大大影響實際曝光結果,因此我們圍繞承載盤進行設計。本研究為了曝光機模型穩定調整了曝光方向,並設計出能帶動承載盤的卡榫元件和穩定承載盤的裝置,以及用來接收光源的可調式分時檢測裝置和支撐平台。
本研究針對簡易旋轉式LED曝光機的測量方式透過8顆光感測器以最小間隔距離0.5cm進行排列,覆蓋範圍為0cm~16cm。將光感測器使用Arduino測量,並將一次曝光時間設為5秒,光感測器在此期間進行100次測量並取平均值。實際測量結果為承載盤旋轉時產生了±2.5mm的中心偏移與±5mm的旋轉偏移,以及其他相關製造誤差,相比於模擬結果有效曝光面積增大1cm,並且曝光均勻度能保持在≧90%,最後驗證了模擬結果的準確性以及可行性。
摘要(英) In this study, we aimed to design a physical, simplified rotating LED exposure device by employing the concept of virtual-physical integration to establish a computational model for the exposure machine. Initially, the LED illuminance distribution was formulated, and mathematical software was used to simulate the overlap of illuminance and displacement. The exposure machine model was then designed according to the required specifications. Through the computational model, we were able to verify the improvements in the rotating exposure machine compared to the traditional static exposure machine. Furthermore, the boundary effect in the rotating exposure machine, which led to suboptimal exposure results, was addressed by adjusting the LED arrangement to achieve an exposure uniformity of ≥90%. In addition, we utilized optical simulation software to validate the accuracy of the computational model by constructing an exposure machine model and conducting ray tracing. The simulation results deviated from the computed results by only 3%.
Prior to the implementation of the simplified exposure machine, we took energy efficiency and environmental sustainability into account. During the design of the machine components, we prioritized the use of recycled materials and repurposed components. A prototype of the rotating LED exposure machine was manually constructed and assembled for validation purposes. Due to safety concerns, the UV-LED was replaced with a white-light LED for subsequent experiments. Moreover, since the selected high-power LEDs generate significant heat, which could lead to thermal degradation, we designed a cooling system for the LED carrier plate and conducted thermal simulations using CFD software to optimize heat dissipation.
In the design process of the exposure machine components, we focused on the carrier plate, as any central misalignment or angular deviation of the collimated light source modules installed on the plate would severely impact the exposure results. To stabilize the exposure machine model, we adjusted the exposure direction and designed components such as locking elements to drive the carrier plate, stabilization devices, and an adjustable detection system to receive the light source, along with a supporting platform.
For the measurement of the simplified rotating LED exposure machine, we arranged eight light sensors with a minimum interval of 0.5 cm, covering a range of 0 cm to 16 cm. The light sensors were measured using Arduino, with the exposure time set to 5 seconds per measurement, during which each sensor conducted 100 measure ments, and the average value was calculated. The actual measurements revealed a central misalignment of ±2.5 mm and a rotational deviation of ±5 mm during the rotation of the carrier plate, along with other manufacturing-related errors. Compared to the simulation results, the effective exposure area increased by 1 cm, while the exposure uniformity remained at ≥90%. These findings ultimately validated the accuracy and feasibility of the simulation results.
關鍵字(中) ★ UV-LED
★ 旋轉式曝光機
★ 光場函數
關鍵字(英) ★ Ultraviolet light emitting diode
★ rotary exposure machine
★ light field function
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 1
1 第一章、緒論 2
1-1 研究背景 2
1-2 研究動機與目的 5
1-3 文獻回顧 5
1-4 論文架構 7
2 第二章、基本理論 8
2-1 輻射度量學 8
2-1-1 輻射通量 8
2-1-2 立體角 8
2-1-3 輻射強度 9
2-1-4 輻射照度 9
2-1-5 輻射照度均勻度 9
2-2 曝光劑量 10
2-3 照度分布函數化 10
2-3-1 模擬光源 10
2-3-2 照度分布演算函數 11
2-3-3 照度疊加理論 12
2-3-4 照度位移疊加理論 13
3 第三章、簡易LED曝光機模型模擬與驗證 14
3-1 模擬架構 14
3-2 光源間距與旋轉中心 15
3-3 直曝式與旋轉式曝光機演算模型模擬 16
3-3-1 簡易直曝式曝光機均勻度分析 16
3-3-2 簡易旋轉式曝光機均勻度分析 18
3-3-3 調整邊界區域的光源分析 19
3-4 LightTools模擬 22
3-4-1 蒙地卡羅光線追跡法 22
3-4-2 準直光源模組與偵測面 23
3-4-3 光線追跡模擬 24
4 第四章、簡易旋轉式LED曝光機架構設計與模擬 27
4-1 簡易旋轉式LED曝光機設計步驟 27
4-1-1 LED目標工作溫度 27
4-1-2 承載盤材料選擇與散熱設計 30
4-1-3 驅動馬達與轉動軸卡榫元件設計 31
4-1-4 承載盤穩定裝置設計 33
4-2 承載盤熱流模擬 35
4-2-1 Fluent軟體介紹 35
4-2-2 前處理器 35
4-2-3 求解器 37
4-3 可調式分時檢測裝置設計 39
5 第五章、簡易旋轉式LED曝光機實體建構與驗證 42
5-1 簡易旋轉式LED曝光機製作與組裝測試 42
5-2 光源模組與供電方法 45
5-3 可調式分時檢測裝置製作與結果討論 48
6 第六章、結論與未來展望 55
6-1 結論 55
6-2 未來展望 56
7 第七章、參考文獻 57
參考文獻 [1] 臺灣2050淨零排放。檢自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1
[2] PCB產業巨擘 共許未來淨零承諾。檢自https://www.tpcf.org.tw/tpcf/articles/83
[3] Will IC Package Substrate Makers be Next to Rule? Hayao Nakahara. https://digital.pcea.net/issues/october-2023/nakahara/
[4] N.T.I 2022全球PCB排行與行業動態。檢自
https://www.tpca.org.tw/Knowledge/Detail?id=521&itemid=8&mid=252
[5] USHIO Inc, Super high-pressure UV lamps, from:
http://www.ushio.com.tw/tw/products/list/lamp/lamp_01.html
[6] 陳奇夆(2016)。掃描式UV-LED曝光裝置。中華民國專利號I529500。經濟部智慧財產局。
[7] 陳奇夆、孫皓格(2017)。旋轉式曝光機。中華民國專利號I575333。經濟部智慧財產局。
[8] S.A.Prahl, M.Keijzer,S.L.Jacques,A.J.Welch,”A Monte Carlo Model of Light Propagation in Tissue”, SPIE Institute Series Vol. IS 5,pp.102-111,1989.
[9] MathWorks。檢自https://www.mathworks.com/help/stats/weibull-distribution.html
[10] Cree® XLamp® XP-G2 LEDs, data sheet, CLD-DS51 Rev 23,
https://assets.cree-led.com/a/ds/x/XLamp-XPG2.pdf
[11] 郭信宏(2016)。一種應用於類面光源陣列的光場演算技術之研究。國立中央大學。博士論文。
[12] 徐安永(2017)。一種應用於準直系統光源的光照度分布演算之研究。國立中央大學。碩士論文。
[13] 湯閔傑(2023)。一種可應用於旋轉式UV-LED平行曝光裝置之光場虛擬化技術研究。國立中央大學。碩士論文。
[14] LightTools照明設計軟體。檢自https://www.synopsys.com/zh-tw/optical-solutions/lighttools.html
[15] Anderson, H. L.(1896). Metropolis, Monte Carlo and MANIAC. Los Alamos Science, 14, 96-108
[16] Synopsys. (2023). LightTools Ray tracing User Guide:Synopsys.
[17] Max, W., Alexander, H., Hristo, G. Tran, Q. K. (2017). Lifetime Calculation of White HP-LEDs from 16,000 Hours Aging Data. LED professional Review, 34-38.
[18] Ansys Fluent。檢自:https://www.ansys.com/zh-tw/products/fluids/ansys-fluent
[19] Krishna, Z., Gandhar, P., Balasubramanyam, S., Alan, V. (2019). ANSYS MOSAIC POLY-HEXCORE MESH FOR HIGH-LIFT AIRCRAFT CONFIGURATION. 21thAnnual CFD Symposium, August 8-9.
[20] OSRAM Metal Can TO39 Ambient Light Sensor, BPW 21,
https://ams-osram.com/products/photodetectors/photodiodes/osram-metal-can-to39-ambient-light-sensor-bpw-21#Datasheets
[21] UV Illuminance Spectrophotometer SRI-2000 UV (250-850 nm),
https://www.alliedscientificpro.com/shop/uv-illuminance-spectrophotometer-sri-2000-uv-250-850-nm-5914#attr=
[22] Motion Technology Slip Ring Product Catalog. 檢自https://www.moog.com/literature/MCG/srcatalog.pdf
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2024-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明