參考文獻 |
References
[1] Pallab Bhattacharya " Semiconductor Optoelectronic Devices (second edition)," pp. 373-374, 1997.
[2] R. J. McIntyre," Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices, vol. ED-13, pp. 164-168, 1966.
[3] G. E. Bulman, V. M. Robbins, K. F. Brennan, K. Hess, and G. E. Stillman, "Experimental determination of impact ionization coefficients in (100) GaAs," IEEE Electron Device Lett., vol. EDL-4, pp. 181-185, 1983.
[4] K. Brennan, "Theory of electron and hole impact ionization in quantum well and staircase superlattice avalanche photodiode structures," IEEE Trans. Electron Devices, vol. ED-32, pp. 2197-2205, 1985.
[5] H. Blauvelt, S. Margalit, and A. Yariv, "Single-carrier-type dominated impact ionisation in multilayer structures," Electron. Lett., vol. 18, pp. 375-376, 1982.
[6] K. Brennan, "Theory of the GaInAs/A1InAs-doped quantum well APD: A new low-noise solid-state photodetector for lightwave communication systems, " IEEE Trans. Electron Devices, vol. ED-33, 1653-1695, 1986.
[7] K. Brennan, "Theory of the doped quantum well superlattice APD: A new solid state photomultiplier," IEEE J. Quantum Electron., vol. QE-22, pp. 1999-2016, 1986.
[8] K. Brennan, "The pn junction quantum well APD: A new solid state Photodetector for lightwave communications systems and on-chip detector applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 782-792, 1987.
[9] K. Brennan, "The p-n heterojunction quantum well APD: A new high-gain low-noise high-speed photodetector suitable for lightwave communications and digital applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 793-803, 1987.
[10] K. Brennan, "Optimization and modeling of avalanche photodiode structures: Application to a new class of superlattice photodetectors, the p-i-n, p-n homojunction, and p-n heterojunction APD's," IEEE Trans. Electron Devices, vol. ED-34, pp. 1658--1669, 1987.
[11] F. Capasso, "Physics of avalanche photodiodes," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds. Lightwave Communications Technology, W. T. Tsang, Ed. New York:Academic, 1985, vol. 22, part D, pp. 1-172.
[12] F. Osaka, T. Mikawa and O. Wada, “ Electron and hole impact ionization rates in InP/Ga0.47In0.53As superlattice,” IEEE J. Quantum Electron., vol. QE-22, pp. 1986-1991,1996.
[13] K. Brennan, K. Hess and F. Capasso, “Physics of the enhancement of impact ionization in multiquantum well structures” Appl. Phys. Lett., vol. 50, no. 26, pp. 1897-1899, 1987.
[14] W. Maes, K. De Meyer and R. Van Overstraeten, “Impact ionization in silicon: a review and update,” Solid-State Electronics, vol. 33, no. 6, pp. 705-718, 1990.
[15] K. M. Van Vliet, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part I: One-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 746-751, 1979.
[16] K. M. Van Vliet, A. Friedmann, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part II: Two-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 752-764, 1979.
[17] R. S. Fyath, J. J. O'Reilly, "Multilayer APDs producing up to two impact ionisations per carrier per stage: Optical receiver performance analysis," IEE Proc., vol. 135, Pt. J, pp. 101-105, 1988.
[18] P. A. Wolff, Physics Review, vol. 95, pp. 1415, 1945
[19] NAGIB Z. HAKIM, BAHAA E.A SALEH and MALVIN C. TEICH, follow, IEEE “Generalized excess noise factor for APD of arbitrary structure, ” IEEE Trans. Electron Devices. vol. 37, NO 3, march, 1990.
[20] F. Capasso, W. T. Tsang, and G. F. Williams, “Staircase solid state photomultipliers and avalanche photodiodes with enhanced ionization rate ratio,” IEEE Trans. Electron Devices, vol. ED-30, pp. 381-390, 1982.
[21] F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. P. Williams, “Enhancement of electron impact ionization in superlattice: A new avalanche photodiode with large ionization rates ratio,” Appl. Phys. Lett., vol. 40, pp. 38-40, 1982.
[22] F. Capasso, “The channeling avalanche photodiode: A novel ultra low noise interdigitated p-n junction detector,” IEEE Trans. Electron Devices, vol. ED-29, pp. 1388-1395, 1982.
[23] G. F. William, F. Capasso, and W. T. Tsang, “The graded bandgap multiplayer avalanche photodiode: A new low noise detector,” IEEE Electron Devices Lett., vol. EDL-3, pp. 71-73, 1982.
[24] J. W. Hong, W. L. Laih, Y. W. Chen, Y. K. Fang, C. Y. Chang and J. Gong, "Optical and noise characteristics of amorphous Si/SiC superlattice reach-through avalanche photodiode," IEEE Trans. Electron Devices, vol. ED-37, no.8, pp.1804-1809, 1990.
[25] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “III-V compound semi-conductor devices: optical detectors,” IEEE trans. Electron Devices, vol. ED-31, pp. 1643-1655, 1984.
[26] R. Chin, N. Holonyak, G. E. Stillman, J.Y. Tang, and K. Hess, “Impact ionization in multilayered heterojunction structures,” Electron. Lett., vol. 16, pp. 467-469, 1980.
[27] Y. Okayasu, K. Fukui, and M. Matsumura, “Observation of valance-band discontinuity of hydrogenerated-amorphous Si/SiC heterojunction by photocurrent-voltage measurements ” Appl. Phys. Lett., vol. 50, pp. 248-249, 1987.
[28] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa "Amorphous silicon-carbide thin-film light emittingdDiode", Optoelectronics Devices and Technologies, Vol. 1, No. 1, p. 67-84, 1986.
[29] Rong-Hwei Yeh, "Green-blue porous silicon light-emitting diode", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[30] Yung-Hung Wu, "Optoelectronic characteristics of a-SiC:H-based p-i-n thin-film LEDs having a thin Mo buffer layer in contact with p-a-Si:H", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[31] K. Tanaka, Glow-discharge Hydrogenated Amorphous Silicon, Chap. 3, KTK Scientific Publishers, 1989.
[32] J. N. Hollenhorst, "A theory of multiplication noise," IEEE Trans. Electron Devices. vol. 37, pp. 781-788, 1990. |