參考文獻 |
[1] B. Razavi, RF microelectronics, Prentice Hall Inc, New York, 1998. [2] G. D. Vendelin, A. M. Pavio and U.L. Rohade, Design of Microwave Circuits Using Linear and Nonlinear Techniques, 2nd Edition, Wiley, 2005. . [3] S. A. Maas, Nonlinear microwave and RF circuits, Boston, MA, Artech House, 2003. [4] B. Gilbert, “A prise four-quadrant multiplier with subnanosecond reponse,”IEEE J. Solid-State Circuits, vol. SC-3, pp. 365-373, Dec. 1968. [5] B. Gilbert, “The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1412-1423, Sept. 1997. [6] M. Ogawa, K. Ohata, T. Furutsuka, and N. Kawamura, “Submicron Single-Gate and Dual-Gate GaAs MESFET’S with Improved Low Noise and High Gain Performance,” IEEE Trans. Microwave Theory Tech., vol. 24, no. 6 pp. 300–305, Jun. 1976. [7] J. R. Scott, and R. A. Minasian, “A Simplified Microwave Model of the GaAs Dual-Gate MESFET,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 3 pp. 243–248, Mar. 1984. [8] C. Licaurish, M J. Howes, and C. M. Snowden, “A New Method for Dual-Gate GaAs MESFET,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 10 pp. 1497–1505, Mar. 1989. [9] M. Schoon, “A Novel, Bias-Dependent, Small-Signal Model of the Dual-Gate MESFET,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 2 pp. 212–216, Feb. 1994. 106
[10] M. Ibrahim, B. Syrett, and J. Bennett, “Simple and Accurate Technique for Extracting the Parasitic Resistances of the Dual-Gate GaAs MESFET,” IEEE Microwave Wireless Compon. Lett, vol. 12, no. 8 pp. 284–286, Aug. 2002. [11] J. P. Mondal, A. G. Milnes, J. G. Oakes, and S. K. Wang, “Phase Shifters in Single- and Dual-Gate GaAs MESFET’s for 2-4-GHz Quadrature Phase Shifters,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 10 pp. 1280–1288, Oct. 1984. [12] T. Sugiura, K. Honjo and T. Tsuji, “12-GHz-Band GaAs Dual-Gate MESFET Monolithic Mixers,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 2, pp. 105–110, Feb. 1985. [13] C. A. Liechti, “Performance of Dual-Gate GaAs MESFET’s as Gain-Controlled Low-Noise Amplifiers and High-Speed Modulators,” IEEE Trans. Microwave Theory Tech., vol. 23,no. 6, pp. 461–469, Jun. 1975. [14] R. G. Meyer, R. Eschenbach, and W. M. Edgerley, “A wide-band feedforward amplifier,” IEEE Journal of Solid-State Circuits, vol. 9, pp. 422–428, Dec. 1974. [15] E. E. Eid and F. M. Ghannouchi, “Adaptive nulling loop control for1.7 GHz feedforward linearization systems,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 83–86, Jan. 1997. [16] Y. Kim and S. Lee, “Linearized mixer using predistortion technique,” IEEE Microwave Wireless Compon. Lett., vol. 12, pp. 204–205, June 2002. [17] Y. Yang, Y. Y. Woo and B. Kim, “New Predistortion Linearizer Using Low-Frequency Even-Order Intermodulation Components,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 446–452, Feb. 2002. [18] K. Choi, D. H. Shin, and C. P. Yue, “A 1.2 V 5.8-mW, Ultra-Wideband Folded Mixer in 0.13-µm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2007. 107
[19] F. C. Chang, P. C. Huang, S. F. Chao and H. Wang, “A Low Power Folder Mixer for UWB System Applications in 0.18-µm CMOS Technology,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 5, pp. 367–369, May 2007. [20] B. G. Perumana, S. Chakraborty, C. H. Lee, and J. Laskar, “A Subharmonic CMOS Mixer Based on Threshold Voltage Modulation,” in 2005 IEEE MTT-S Int. Microwave Symp. Dig., June 2005, pp. 12-17. [21] C. Y. Lee, T. S. Chen, J. D. S. Deng, and C. H. Kao, “A Simple Systematic Spiral Inductor Design With Perfected Q Improvement for CMOS RFIC Application,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 523–528, Feb. 2005. [22] M. Park, S. Lee, C. S. Kim, H. K. Yu, and K. S. Nam, ”The Detailed Analysis of High CMOS-Compatible Microwave Spiral Inductors in Silicon Technology,” IEEE Trans. on Electron Devices, vol. 45, no. 9, pp. 1953–1959, Sep. 1998. [23] M. C. Hsieh, Y. K. Fang, C. H. Chen, S. M. Chen, and W. K. Yeh, “Design and Fabrication of Deep Submicron CMOS Technology Compatible Suspended High-Q Spiral Inductors,” IEEE Trans. on Electron Devices, vol. 51, no. 3, pp. 324–331, Mar. 2004. [24] Y. Wu, X. Ding, M. Ismail, H. Olsson, “RF Bandpass Filter Design Base on CMOS Active Inductors,” IEEE Trans. on circuits and systems, vol. 50, no. 12, pp. 942–949, Dec. 2003. [25] S. Lucyszyn and I. D. Robertson, “Monolithic narrow-band filter using ultrhigh-Q tunable active inductors,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2617–2622, Dec. 1994. [26] L. H. Lu, H. H. Hsieh, and Y. T. Liao, “A Wide Tuning-Range CMOS VCO With a Differential Tunable Active Inductor,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3462–3468, Sep. 2006. 108
[27] H. H. Hsieh, Y. T. Liao and L. H. Lu, “A Compact Quadrature Hybrid MMIC Using CMOS Active Inductors,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1098–1104, Jun. 2007. [28] L.-H. Lu, Y.-T. Liao, and C.-R.Wu, “A miniaturizedWilkinson power divider with CMOSactive inductors,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 11, pp. 775–777, Nov. 2005. [29] J.-S. Ko and K. Lee, “Low power, tunable active inductor and its applications to monolithic VCO and BPF,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1997, pp. 929–932. [30] J. N. Yang, M. J. Wu, and C. Y. Lee, “Loss compensation in RF CMOS Active Inductor Using a Capacitor,” IEICE Trans. Electronic, vol. E87-C, no. 12, pp. 2198-2201, Dec. 2004. [31] M. Zargari, D. Su, C.P. Yue, S. Rabii, D. Weber, B. Kaczynski, S. Mehta, K. Singh, S. Mendis, and B. Wooley, “A 5-GHz CMOS Transceiver for IEEE 802.11a Wireless LAN,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1688-1694, Dec. 2002. [32] S. K. Reynolds, B. A. Floyd, T. Beukema, T. Zwick, U. Pfeiffer, and H. Ainspan, ”A Direct-Conversion Receiver IC for WCDMA Mobile Systems,” IEEE J. Solid-State Circuits, vol. 38, no.9, pp. 1555-1560, Sep. 2003. [33] F. O'Mahony, C. P. Yue, M. A. Horowitz, S. S. Wong, "A 10-GHz Global Clock Distribution Using Coupled Standing-Wave Oscillators," IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1813-1820, November 2003. [34] B. A. Floyd, S. K. Reynolds, T. Zwick, L. Khuon, T. Beukema, and U. R. Preiffer, “WCDMA direct-conversion receiver front-end comparison in RF-CMOS and SiGe BiCMOS,” IEEE Trans. Microwave Theory Tech, vol. 53, no. 4, pp. 1181-1188, Apr.. 2005.
109
[35] Q. Huang, P. Orsatti, and F. Piazza, “GSM transceiver front-end circuits in 0.25-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, no.3, pp. 292-303, Mar. 1999. [36] A. Liscidini, M. Brandolini, Davide Sanzogni, and R. Castello, ”0.13 µm CMOS Front-End, for DCS1800/UMTS/ 802.11b-g With Multiband Positive Feedback Low-Noise Amplifier,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 981-989, Apr. 2006. . [37] G. Montagna, G. Gramegna, I. Bietti, M. Franciotta, A. Baschirotto, P. D. Vita, R. Pelleriti, M. Paparo, and R. Castello, “A 35-mW 3.6-mm2 Fully Integrated 0.18-_m CMOS GPS Radio,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1163-1171, Jul. 2003. [38] Z. Li, R. Quintal, and K. O. Kenneth, ”A Dual-Band CMOS Front-End With Two Gain Modes for Wireless LAN applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 2069-2073, Nov. 2004. [39] B. Razavi, “A 60-GHz CMOS Receiver Front-End” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 17-22, Jan. 2006. [40] P. Sivonen, J. Tervaluoto, N. Mikkola, and A. Parssinen, “A 1.2-V RF Front-End With On-Chip VCO for PCS 1900 Direct Conversion Receiver in 0.13-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 2, pp. 384-394, Feb. 2006. [41] G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, “A 0.18-µm CMOS Selective Receiver Front-End for UWB Applications,” IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1764-1771, Aug.. 2006. [42] X. Guan, and A. Hajimiri, “A 24-GHz CMOS Front-End, ”IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb.. 2004. 110
[43] R. Fujimoto, K. Kojima, and S. Otaka, “A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier “, IEEE J. Solid-State Circuits, vol. 37, no.7, pp. 852-856, Jul. 2002. [44] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Doubly Balanced Dual-Gate CMOS Mixer,” IEEE J. Solid-State Circuits, vol. 34, no.6, pp. 878-881, Jun. 1999. [45] W. R. Deal, M. Biedenbender, P. H. Lin, J. Uyeda, M. Siddiqui, and R. Lai, “Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers” IEEE J. Solid-State Circuits, vol. 42, no.10, pp. 2107-2115, Oct. 2007. [46] K. H. Liang, and Y. J. Chan, “A 0.18 µm Dual-Gate CMOS Model for the Design of 2.4 GHz Low Noise Amplifier,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006. [47] C. W. Kuo, C. C. Hsiao, C. C. Ho, and Y. J. Chan, “Scalable large-signal model of 0.18 µm CMOS process for rf power predictions,” Solid-State Electronics, vol 47, pp. 77-81, 2002. [48] C. C. Ho, C. W. Kuo, C. C. Hsiao, and Y. J. Chan, “A 0.18 µm p-MOSFET large-signal RF model and its application on MMIC design” Solid-State Electronics, vol 47, pp. 1117-1122, 2003. [49] W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal and J. P. Mattia, “RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model”, in Technical Digest of Electron Devices Meeting, pp. 309–312, 1997. [50] J. J. Ou, X. Jin, I. Ma, C. Hu and P. R. Gray, “CMOS RF modeling for GHz communication IC’s”, in Technical Digest of VLSI Technology, pp. 94-95, 1998. [51] D. H. Shin, and C. P. Yue, “A Unified Modeling and Design Methodology for RFICs Using Parameterized Sub-Circuit Cells,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006. 111
[52] S. H. M. Jen, C. C. Enz, D. R. Pehlke, M. Schroter and B. J. Sheu, “Accurate modeling and parameter extraction for MOS transistors valid up to 10 GHz,” IEEE Trans. Electron Devices, vol. 46, pp. 2217-2227, 1999. [53] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no.5, pp. 745-759, May 1997. [54] C. Ariyavisitakul and T.-P. Liu “Characterizing the effects of nonlinear amplifiers on linear modulation for digital portable radio communications” IEEE Trans. Veh. Technol., vol. 39 no. 4, pp. 383-389, Nov. 1990. [55] T. J. Ellis, “A modified feed-forward technique for mixer linearization,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1998, pp. 1423–1426. [56] Y. Kim, Y. Kim, and S. Lee, “Linearized mixer using predistortion technique,” IEEE Microwave Wireless Compon. Lett, vol. 12, no. 6, pp. 204–205, Jun. 2002. [57] K. K. M. Cheng and C.F. Au-Yeung, “Novel difference-frequency dual-signal injection method for CMOS mixer linearization” IEEE Microwave Wireless Compon. Lett, vol. 14, no. 7, pp.358–360, Jul. 2004. [58] I. Kwon and K. Lee, ”An integrated low power highly linear 2.4-GHz CMOS receiver front-end based on current amplification and mixing,” IEEE Microwave Wireless Compon. Lett, vol. 15, no. 1, pp.36–38, Jan. 2005. [59] Y. Yang and B. Kim, “A new linear amplifier using low-frequency second-order intermodulation component feedforwarding,” IEEE Microwave Guided Wave Lett., vol. 9, no. 10, pp. 419–421, 1999. [60] D. Su and W. McFarland, “An IC for linearizing RF power amplifiers using envelope elimination and restoration,” IEEE J. Solid-State Circuits, vol. 33, pp. 2252–2258, Dec. 1998. [61] T. W. Kim, B. Kim, and K. Lee, “Highly Linear Receiver Front-End Adoping
112
MOSFET Transconductance Linearization by Multiple Gate Transistors” IEEE J. Solid-State Circuits, vol. 39,no.1, pp. 223–229, Jan. 2004. [62] C.-C. Yen and H.-R. Chuang, “A 0.25-µm 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer,” IEEE Microwave Wireless Compon. Lett., vol. 13, pp. 45–47, Feb. 2003. [63] Y. Tsividis, Operation and Modeling of the MOS Transistor. , Singapore: McGraw-Hill, 1999. [64] S. Kang, B. Choi, and B. Kim, “Linearity analysis of CMOS for RF application,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 972–977, Mar. 2003. [65] C. Wang, M. Vaidyanathan, and L. E. Larson, “A capacitance-compensation technique for improved linearity in CMOS class AB power amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1927–1937, Nov. 2004. [66] P. H. Woerlee, M.J. Knitel, R.V. Langevelde, D.B.M. Klaassen, L.F. Tiemeijer, A.J. Scholten, and T.A.Z. Duijnhoven , “RF-CMOS performance trends,” IEEE Trans. Electron Devices, vol. 48, pp. 1776-1782, Aug. 2001. [67] B. Kim, J. Ko, and K. Lee, “A New Linearization Technique for MOSFET RF Amplifier Using Multiple Gated Transisotrs,” IEEE Microwave and Guided Wave Lett, vol. 10, no. 9, pp.371–373, Jan. 2000. [68] A. Katz, “Linearization: reducing distortion in power amplifiers,” IEEE Microwave Magazine, vol. 2, no. 4, pp. 37-49, Dec 2001. [69] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui and T. Takagi, “A microwave miniaturized linearizer using a parallel diode with a bias feed resistance,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2431–2435, Dec. 1997. [70] Moon-Suk Jeon, et al., “A new active predistortion with high gain using cascode-FET structures,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2003, pp. 253-256.
113
[71] C. Haskins, T. Winslow and S. Raman, “FET diode linearizer optimization for amplifier predistortion in digital radios,” IEEE Microwave and Guided Wave Lett, vol. 10, no. 1, pp.21–23, Jan. 2000. [72] M. Johansson and T. Mattson, “Transmitter Linearization Using Cartesian Feedback for Linear TDMA Modulation,” Proc. IEEE Veh. Tech.Conf., pp. 439-444, May 1991. [73] H. Seidel, “A microwave Feedforward Experiment,” Bell System Technical J. vol. 50, pp. 2879-2916, Nov. 1971. [74] R. G. Meyer, R. Eschenbach, and W. M. Edgerley, “A Wideband Feedforward Amplifier,” IEEE J. Solid-State Circuits, vol. 9, no. 11, pp. 422–488, Dec. 1974. [75] S. Tanaka, F. Behbahani, and A. A. Abidi, “ A linearization technique for CMOS RF power amplifiers,“ in IEEE Symp. VLSI Circuits Dig. Technical Papers, 1997, pp. 93-94. [76] S. A. Mass and D. Neilson, “Modeling GaAs MESFET’s for intermodulation analysis of mixer and amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1964-1971, Dec 1990. [77] M. T. Terrovitis and R. G. Meyer, “Intermodulation distortion in current- commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol. 35, pp.1461-1473, Oct. 2000. [78] H. M. J. Boots, G. Doornbos, and A. Heringa,”Scaling of Characteristic Frequencies in RF CMOS”, IEEE Trans. Electron Devices, vol. 51 no. 12 , pp. 2102-2108, Dec. 2004. [79] P. J. Sullivan, B. A. Xavier and W. H. Ku, “Low Voltage Performace of a Microwave CMOS Gilbert Cell Mixer, “IEEE J. Solid-State Circuits, vol. 32, no. 7, pp. 1151-1155, July. 1997.
114
[80] M. Harada, T. Tsukahara and J. Yamada, “0.5-1V 2GHz RF Front-end Circuits in CMOS/SIMOX,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2000, pp. 378–379. [81] X. Wang, R. Weber, and D. Chen, “A novel 1.5 V CMFB CMOS down-conversion mixer design for IEEE 802.11a WLAN systems,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 4, pp. IV-373-6, May 2004. [82] M. Goldfarb, E. Balboni, and J. Cavery, “Even Harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762-1766, Oct. 2003. [83] T. K. K. Kan, K. C. Mak, D. Ma, and H. C. Luong, ”A 2-V 900-MHz CMOS mixer for GSM receivers,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 1, pp. 327-330, May 2000. [84] C.-C. Tang, W.-S. Lu, L.-D. Van, and W.-S. Feng, “A 2.4-GHz CMOS down-conversion doubly balanced mixer with low supply voltage,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 4, May 2001, pp. 794-797. [85] C. G. Tan, ”A high-performance low-power CMOS double-balanced IQ down-conversion mixer for 2.45-GHz ISM band application,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2003, pp. 457-460. [86] C. Hermann, M. Tiebout and H. Klar, “A 0.6-V 1.6-mW Transformer-Based 2.5-GHz Downconversion Mixer With +5.4-dB Gain and -2.8-dBm IIP3 in 0.13-µm CMOS,” IEEE Trans. Microwave Theory Tech, vol. 53, no. 2, pp. 488-495, Feb. 2005. [87] L. Liu and Z. Wang, “Analysis and Design of a Low-Voltage RF CMOS Mixer,” IEEE Trans. Circuit and Systems-II, vol. 53, no. 3, pp. 212-216, Mar. 2006. 115
[88] M.-F. Hung, C.-J. Kuo, and S.-Y. Lee, “A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage Applications,” IEEE Trans. Microwave Theory and Tech, vol. 54, no. 2, pp. 660-669, Feb. 2006. [89] V. Vidojkovic, J. V. D. Tang, A. Leeuwenburgh, and A. H. M. V. Roermund,“A Low-voltage folded-switching mixer in 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1259-1264, Jun. 2005. [90] Eric A. M. Klimperink, M. Louwsma, Gerard J. M. Wienk, and Barm Nauta,“A CMOS switched transconductor mixer, “IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231-1240, Aug. 2004. [91] F. Mahmoudi, and C.A. T. Salama, “8 GHz, 1 V, High Linearity, Low Power CMOS Active Mixer,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2004, pp. 401-404. [92] H. M. Wang, “ A 1 V multigigahertz RF mixer core in 0.5 µm CMOS”, IEEE Journal of Solid-State Circuit, vol. 33, no. 12, pp. 2265-2267, Dec. 1998. [93] G. Kathiresan, C. Toumazou,“A Low Voltage Bulk Driven Downconversion Mixer Core,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 2, May 1999, pp. 598-601. [94] A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE J. Solid-State Circuits, vol. 31, pp. 1939-1944, Dec. 1996. [95] M. T. Terrovitis and R.G. Meyer, “Noise in Current-Commutation CMOS Mixer,” IEEE J. Solid-State Circuit, vol. 34, no. 6, pp. 772-783, Jun. 1999. [96] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: A simple physical model” IEEE J. Solid-State Circuit, vol. 35, no. 1, pp. 15-25, Jan. 2000. [97] J. N. Burghartz, K. A. Jenkins and M. Soyuer, “Multilevel-spiral inductors using VLSI interconnect technology”, IEEE Electron Device Letters, vol. 17, pp. 428-430, Sept. 1996.
116
[98] M. Park, S. Lee, H. K. Yu, J. G. Koo and K. S. Nam, “High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology”, IEEE Microwave and Guided Wave Letters, vol. 7, pp. 45-47, Feb. 1997. [99] P. Q. Chen and Y. J. Chan, “Improved microwave performance on low-resistivity Si substrates by Si+ ion implantation”, IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1582 –1585, Sep. 2000. [100] S. Hara and T. Tokumitsu, “Monolithic microwave active inductors and their applications”, Digest of IEEE International Symposium on Circuits and Systems, pp.1857-1860, vol.3, June 1991. [101] S. G. El Khoury, “New approach to the design of active floating inductors in MMIC technology”, IEEE Trans. Microwave Theory Tech., Vol. 44, April 1996, pp. 505−512. [102] A. Pascht, J. Fischer and M. Beeroth, “A CMOS low noise amplifier at 2.4 GHz with active inductor load”, Silicon Monolithic Integrated Circuits in RF Systems, 2001, pp. 1−5. [103] G. Mascarenhas, J. Caldinhas Vaz and J. Costa Freire, “CMOS active inductors for L band”, Asia-Pacific Microwave Conference, 2000, pp. 157−160. [104] J. N. Yang, Y. C. Cheng, T. Y. Hsu, T. R. Hsu and C. Y. Lee, “A 1.75 GHz inductor-less CMOS low noise amplifier with high-Q active inductor load”, Midwest Symposium on Circuits And Systems, Vol. 2, 2001, pp. 816−819. [105] U. Yoaprasit and J. Ngarmnil, “Q-Enhancement technique for RF CMOS active inductor,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), Vol. 5, pp. 592-598, 2000. [106] Chen-Yi Lee, Jyh-Neng Yang, and Yi-Chang Cheng, “Improving RF CMOS Active Inductor by Simple Loss Compensation Network,” IEICE Transaction Communication, Vol. E87-B, No. 6, pp. 2195-2198, June 2004. 117
[107] T. K. Lin, and A. J. Payne, “Design of a Low-Voltage, Low-Power, Wide-Tuning Integrated Oscillator,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), pp. V-629-V-632, 2000. [108] H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A high-Q broad-band active inductor and its application to a low-loss analog phase shifter”, IEEE Transactions on Microwave Theory and Techniques, pp.2369-2374, vol. 44, no.12, Dec. 1996. [109] P. Alinikula, R. Kaunisto, and K. Stadius, “Monolithic active resonators for wireless applications”, Digest of IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp.197-200, May 1994. [110] S. Lucyszyn and I.D.Robertson, “Monolithic narrow-band filter using ultrahigh-Q tunable active inductors”, IEEE Transactions on Microwave Theory and Techniques, pp.2617-2622, vol.42, no.12, Dec. 1994. [111] I. E. Ho and R. L. Van Tuyl, “Inductorless monolithic microwave amplifiers with directly cascaded cells”, in Tech. Digest of IEEE MTT-S symposium, vol. 1, May 1990, pp 515−518. [112] A. Thanachayanont and A. Payne, “ VHF CMOS integrated active inductor”, Electronics Letters, Vol. 32, May 1996, pp. 999−1000. [113] C.C. Hsiao, C.W. Kuo, C.C. Ho, and Y.J. Chan, “Improved Quality-Factory of 0.18-µm CMOS Active Inductor by a Feedback Resistor Design”, IEEE Microwave and Wireless Components Letters, vol.12, pp. 467-469, Dec. 2002. [114] H. J. Orchard, “Gyrator circuits,” in active Filters: Lumped, Distributed, Integrated, Digital and Parametric, L. P. Huelsman, Ed. New York: McGraw-Hill, 1970, pp.90-127 [115] Y. T. Wang and A. Abidi, “CMOS active filter design at very high frequency”, IEEE J. Solid-State Circuits, SC-25 (6), pp. 1562-1574, Dec. 1990.
118
[116] Derek K. Shaeffer, Avin R. Shahani, S.S.Mohan, Hirad Samavati, Hamid R. Rategh, Maria del Mar Hershenson, Mix Xn, C. Patrick Yue, Deaiel J. Eddleman and Thomas H. Lee, “A 115-mW, 0.5-µm CMOS GPS Receiver With Wide Dynamic-Range Active Filters” IEEE J. Solid-State Circuits, vol. 33, pp. 2219-2230, Dec. 1998. [117] M. Ismail, R. Wassenaar, and W. Morrison, “A High-Speed Continuous-Time Bandpass VHF Filter In MOS Technology,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 3, pp. 1761 -1764, April 1991. [118] Y. Wu, X. Ding, M. Ismail, and H. Olsson, “Inductorless CMOS RF bandpass filter,” Electron.Lett.,, vol. 37, No. 16, pp. 1027-1028, April 2001. [119] Y. Wu, X. Ding, M. Ismail, and H. Olsson, “A novel CMOS fully differential inductorless RF bandpass filter,” IEEE Int. Symp. Circuits Systems (ISCAS), vol. 4, pp. 149-152, 2000. |