博碩士論文 91541010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.17.110.119
姓名 潘俊廷(Chun-ting Pan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵系列異質接面雙極性電晶體之研究與製作
(GaN-Based Heterojunction Bipolar Transistors Study)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化鎵(GaN)材料於近十年來應用於光電與電子元件的發展突飛猛進,產品種類也不斷推陳出新。以電子元件為例,氮化鋁鎵/氮化鎵(AlGaN/GaN)高速電子遷移率電晶體由於氮化鎵本身的材料特性,使其可操作在高溫的環境下,也可比其他材料製作的電晶體提供較高的功率輸出。因此,本論文研究的目標為製作出氮化鎵系列的異質接面雙極性電晶體。然而,有兩個關鍵因素使得氮化鎵系列的異質接面雙極性電晶體難以製作出來:(1)經由乾蝕刻造成p型氮化鎵表面破壞,進而形成蕭基特性的基極接點;(2)長晶缺陷(線缺陷)所產生的高漏電流路徑。因此,以氮化鎵為基材來製作異質接面雙載子電晶體是非常有挑戰性的研究。本論文的目標是利用不同方法,包括台面直接蝕刻法及射極重新成長法來製作氮化鎵系列的異質接面雙極性電晶體。
p型氮化鎵在經由乾蝕刻後會造成表面破壞,使得其金屬歐姆接觸難以形成。第二章介紹兩種方法來研究p型氮化鎵金屬歐姆接觸特性,並找出適合於製作氮化鋁鎵/氮化鎵異質接面雙載子電晶體的條件。一為蝕刻後的p型氮化鎵在鹽酸與王水溶液經由表面處理後,蒸鍍鎳/金,鉑/金與鉻/金三種不同金屬,採用電流-電壓特性分析表面處理與不同金屬對金屬歐姆接觸的影響。另一方法為使用鋅(Zn)擴散在蝕刻後之p型氮化鎵,電流-電壓特性分析研究不同鋅擴散時間對金屬接觸的影響。表面粗糙度之方均根和縱深成分分析被用來討論氮化鎵表面之特性。實驗結果顯示,王水能有效去除表面生成之氧化物,鎳/金比其他金屬得到較好的金屬接觸特性。因此,採用此條件製作氮化鋁鎵/氮化鎵異質接面雙載子電晶體。另一研究結果說明鋅擴散似乎能填補蝕刻後粗糙的表面,但金屬接觸特性卻反而變差。
利用台面直接蝕刻法來製作氮化鋁鎵/氮化鎵異質接面雙載子電晶體的研究內容在第三章中討論,其結構是利用有機化學汽相沈積法(MOCVD)成長,長晶基板為藍寶石,而射極鋁含量為0.17。製作出來的電晶體射極面積為110?110 ?m2,在Gummel plot特性曲線圖中,當VBE = 0.53 V時,得到電流增益為564;在射極接地電流-電壓特性(common-emitter I-V)中,當IB = 10 nA時,電流增益為126。由於長晶產生的線缺陷造成的漏電流路徑與製程產生的高基極電阻,使得在低電流密度下的Gummel plot特性曲線圖中,得到異常高之電流增益。因此要確認電晶體是否真正製作成功,射極接地電流-電壓特性曲線是比較正確的判斷方法。另外由元素縱深分佈發現,p型氮化鎵中的鎂摻雜,在經過高溫成長後,擴散到射極區,進而使電晶體特性變差。因此為避免基極區p型氮化鎵乾蝕刻所造成的表面損傷,以及長晶過程中鎂擴散的影響。接下來利用射極重新成長的方式,製造出氮化鎵系列異質接面雙載子電晶體。
氧化鋅(ZnO)為光電產業中常被使用之透明導電膜,其為寬能隙材料,且晶格常數與氮化鎵相近,因此在第四章選擇氧化鋅當作射極重新成長的材料。晶片結構使用有機化學汽相沈積法成長,重新成長氧化鋅是利用濺鍍(sputter)法。首先x光的分析頻譜(XRD)與光激發螢光頻譜(PL)對重新成長的氧化鋅材料進行物理分析。在x光的分析頻譜分析中,可以證實此重新成長的氧化鋅在退火後,晶格常數與結構都有獲得改善。Gummel plot特性與射極接地電流-電壓特性用來分析射極面積為120?120 ?m2的氧化鋅/氮化鎵異質接面雙載子電晶體,另外也探討不同溫度下電晶體特性的變化。在Gummel plot量測特性中,在溫度為300K且VBE = 2.1 V時,最大的電流增益為168;在溫度為100K且VBE = 2.35 V時,量測到最大的電流增益為1117。由實驗結果顯示,集極電流隨著溫度降低而減少,這是因為載子的活動力在低溫下變低,使得入射效率也變差所導致。然而在低溫下,基極電流減少的幅度比集極電流大,所以發生電流增益變大的現象。
在第五章中,氧化鋁鋅(AZO)取代氧化鋅來當作重新成長的射極層,因為在第四章中,發現氮化鎵/氧化鋅接面特性需要改善,於是採用較高濃度的氧化鋁鋅材料來製作氮化鎵系列異質接面雙載子電晶體。氧化鋁鋅與氧化鋅的結構都與氮化鎵相同,也都具有與氮化鎵相似的晶格常數與寬能隙特性。電晶體結構採用有機化學汽相沈積法成長,氧化鋁鋅射極區還是利用濺鍍法重新成長。先使用x光分析頻譜與霍爾量測(Hall measurement)對成長的氧化鋁鋅進行材料分析。以Gummel plot量測法分析氧化鋁鋅/氮化鎵異質接面雙載子電晶體,在偏壓2V下,得到電流增益為120。從射極接地電流-電壓特性曲線顯示,當基極電流為5 ?A時,電流增益為1.2,且有較小的的位移電壓0.3 V。另外使用將製作出來的電晶體經過硫化處理後,在Gummel plot特性曲線中發現集極電流輕微上升且基極電流些微下降,這顯示硫化處理能有效的去除表面氧化物,導致電流增益從5.8上升到9.4,當偏壓為3 V時。
在最後結論中,整理了本論文所有的結果,並提供一些對製作氮化鎵異質接面雙極性電晶體有所幫助的建議。如以台面直接蝕刻法製作電晶體時,必定面臨p型氮化鎵在蝕刻後所造成的表面破壞,使得歐姆接觸難以製作。可試著利用變溫蝕刻法、濕蝕刻法及提高鎂在p型氮化鎵的濃度來解決。另外,在基極層使用氮化銦鎵可以提高鎂在p型氮化鎵的濃度,進而提升基極的電洞濃度。在緩衝層可採用氮化鋁/低溫成長之氮化鋁來取代原本的氮化鎵,降低晶格不匹配而產生的線缺陷,進而減少漏電流路徑。
摘要(英) In the recent years, the GaN-based electronic devices have attracted attention for high power microwave application, such as AlGaN/GaN high electron mobility transistors (HEMT). However, it is difficult to fabricate working GaN-based HBTs due to the plasma-induced damages on p-GaN, low base conductivity, and high leakage paths resulting from threading dislocations (TDs) in materials and processing. Therefore, this dissertation presents two technologies to fabricate the GaN-base heterojunction bipolar transistors (HBT).
In Chapter 2, we study the p-GaN after dry etching and then treat with different solutions, HCl and aqua regia. Next, different metal contacts on p-GaN were formed for Ohmic contact study. The details of the process flows are presented and related issues are discussed in this chapter. The transmission line method (TLM) measurement is used to characterize the electrical characteristics. The extracted Schottky barrier height (SBH) of Ni/Au, Pt/Au, and Cr/Au were obtained from the current-voltage characteristics to be 0.71, 0.75, and 0.88 eV, respectively. This indicates surface treatment with aqua regia prior to metal deposition can effectively removes the contamination and the Ni/Au metal contact on etched p-GaN shows better contact performance.
Additionally, we study the p-GaN after dry etching and then treat with Zinc- (Zn) diffusion in the furnace. Both TLM measurement and surface morphology including scanning electron microscope (SEM) and atomic force microscope (AFM) are presented. We also investigate the elements distribution on the samples by second ion mass spectroscopy (SIMS) measurement. The measured I-V characteristics of etched p-GaN show the higher specific contact resistance and sheet resistance by surface Zn-diffusion as diffusion time increases. The extracted SBH on etched p-GaN also increases with diffusion time.
In Chapter 3, the fabricated Al0.17Ga0.83N/GaN npn HBT with 110?110 ?m2 emitter area was demonstrated by direct mesa etching process. SIMS analysis for Mg, Si, Ga and Al elements confirms the location of the base-emitter junction. The details of the Al0.17Ga0.83N/GaN HBT fabrication are also described in this chapter. The DC measurement of the Al0.17Ga0.83N/GaN HBT includes the junction, Gummel plot and common-emitter I-V characteristics (CE-IV) are presented. Finally, the current gain of the transistor in collector-up Gummel plot is 4.3 with the VBE =0.9 V, while the CE-IV demonstrates the current gain of 126. Experimental results indicate that the differential current gain was obtained in the Gummel plot and CE-IV characteristics, which is because the leakage currents result in abnormal high gain form Gummel plot measurement.
In order to obtain good base contacts, some of the publications had demonstrated the base- or emitter-regrowth on fabricated GaN-based HBTs. In chapter 4, we used the ZnO film to be the regrown layer by sputter to decrease the base damage from the dry etching process. The SEM, Hall measurement, Photoluminescence (PL) and the X-ray diffraction (XRD) are used to characterize the n-ZnO films. The details of the ZnO/GaN HBT fabrication are also described in this chapter. Both Gummel plot and CE-IV characteristics are measured to verify the fabricated ZnO/GaN HBTs. The measured maximum current gain from Gummel plot is 168 at 300K, while the CE-IV demonstrates the current gain of 41. Moreover, the temperature dependence of DC characteristic is studied in this section.
In chapter 5, an npn AZO/GaN HBT by using emitter re-deposited is presented. The utilization of AZO is similar to the ZnO in the previous chapter. Except for the similar lattice constant with GaN, AZO shows a higher doping concentration and higher bandage than ZnO. The characteristics of carrier concentration, electrical resistivity and Hall mobility of AZO films were studied. The CE-IV characterization shows DC current gain of 1.2. In addition, improved device characteristics are observed after the P2S5/(NH4)2S treatment.
Finally, in chapter 6, we summarized the results obtained in this dissertation and presented some suggestions for further studies.
關鍵字(中) ★ 氮化鎵
★ 氧化鋅
★ 氧化鋁鋅
★ 異質接面雙極性電晶體
關鍵字(英) ★ AZO
★ GaN
★ ZnO
★ HBT
論文目次 Contents
Chinese Abstract I
Abstract IV
Acknowledgement VII
Contents VIII
List of Tables XI
List of Figures XII
Chapter 1
Introduction 1
1.1 Motivation 1
1.2 Research Background 5
1.3 Synopsis of the Dissertation 9
Chapter 2
P-GaN Ohmic Contact Study 12
2.1 Introduction 12
2.2 Different Metal Ohmic Contacts Study 13
2.2.1 Experiment Design 14
2.2.2 Experimental Results and Discussion 16
2.3 Study of Etched p-GaN with Zn-Diffusion 19
2.3.1 Experiment Design 20
2.3.2 Experimental Results and Discussion 21
2.4 Summary 27
Chapter 3
Fabrication and Characterization of AlGaN/GaN Heterojunction Bipolar Transistors 28
3.1 Introduction 28
3.2 Structures of AlGaN/GaN Transistor 30
3.3 Device Processing 31
3.3.1 Emitter Mesa Etch 34
3.3.2 Base Mesa Etch 36
3.3.3 Base Contact Metallization 37
3.3.4 Emitter and Collector Contact Metallization 38
3.4 Device DC Performances 39
3.5 Device Performance Analysis 44
3.6 Summary 48
Chapter 4
Fabrication and Characterization of ZnO/GaN HBT 49
4.1 Introduction 49
4.2 Structures of ZnO/GaN Transistor 51
4.3 The Characteristics of ZnO Film 53
4.3.1 Hall Measurement of ZnO Film 54
4.3.2 X-Ray Diffraction and PL Results of ZnO Film 55
4.4 Device Processing 56
4.4.1 Initial GaN Structure 58
4.4.2 Base Mesa Etch 58
4.4.3 Base Contact Metallization 59
4.4.4 Emitter and Collector Contact Metallization 61
4.5 Device DC Performances 62
4.6 Summary 68
Chapter 5
Fabrication and Characterization of AZO/GaN HBT 69
5.1 Introduction 69
5.2 Structures of AZO/GaN Transistor 71
5.3 The Characteristics of AZO Film 72
5.3.1 SEM Photo of AZO Film 73
5.3.2 Hall Measurement of AZO Film 74
5.3.3 X-Ray Diffraction Results of AZO Film 74
5.4 Device Processing 75
5.4.1 Base Mesa Etch 77
5.4.2 Base Contact Metallization 78
5.4.3 Regrown AZO Emitter Layer 79
5.4.4 Emitter and Collector Contact Metallization 80
5.5 Device DC Performances 81
5.6 DC Performances with Sulfur Treatment 84
5.7 Summary 87
Chapter 6
Conclusions and Future Work 88
6.1 Conclusions 88
6.2 Future Work 90
References 92
Publication List 103
Journal Papers List 103
Conference Papers 103
Patent 104
參考文獻 References
[1] Nicolas Defrance, Virginie Hoel, Yannick Douvry, Jean Claude De Jaeger, Christophe Gaquière, Xiao Tang, Michel Rousseau, Marie Antoinette di Forte-Poisson, James Thorpe, Hacène Lahreche, and Robert Langer, “AlGaN/GaN HEMT High Power Densities on SiC/SiO2/poly-SiC Substrates,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 596-598, 2009.
[2] Jie Liu, Yugang Zhou, Jia Zhu, Yong Cai, Kei May Lau, and Kevin J. Chen, “DC and RF Characteristics of AlGaN/GaN/InGaN/GaN Double-Heterojunction HEMTs,” IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 2-10, 2007.
[3] S. L. Delage, D. Floriot, and C. Brylinski, “Solid state RF power amplifiers: status and perspective,” The 10th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications (EDMO), pp. 136-142, 2002.
[4] S. Yoshida and J. Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys., vol. 85, no. 11, pp. 7931-7934, 1999.
[5] S. N. Mohammad and H. Morkoç, “Progress and prospects of group-III nitride semiconductors,” Prog. Quantum Electronics, vol. 20, no. 5/6 pp. 361-525, 1996.
[6] J. C. Zolper, “A review of junction field effect transistors for high-temperature and high-power electronics,” Solid-State Electronics, vol. 42, no. 12, pp. 2153-2156, 1998
[7] P. Kozodoy, X. Huili, S. P. DenBaars, U. K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W. C. Mitchel, “Heavy doping effects in Mg-doped GaN,” J. Appl. Phys., vol. 87, no. 4, pp. 1832-1835, 2000.
[8] S. M. Sze, Modern Semiconductor Device Physics. Wiley-Interscience, New York, 1998.
[9] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 277-279, June 1999.
[10] L. S. McCarthy, I. P. Smorchkova, P. Fini, M. J. W. Rodwell, J. Speck, S. P. DenBaars and U. K. Mishra, “Small signal RF performance of AlGaN/GaN heterojunction bipolar transistor,” Electron Lett., 38, 144 (2002).
[11] L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices, 48, 543 (2001).
[12] L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys. Lett., 78, 2235 (2001).
[13] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (> 80V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, 2457 (2000).
[14] H. Xing, P. M. Chavarkar, S. Keller, S. P. DenBaars and U. K. Mishra, “Very high voltage operation (> 330 V) with high current gain of AlGaN/GaN HBTs,” IEEE Electron Device Lett., vol. 24, 141 (2003).
[15] X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett., vol. 3, 144 (2000).
[16] F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron., vol. 44, 239 (2000).
[17] K. P. Lee, A. P. Zhang, G. Dang, F. Ren, J. Han, S. N. G. Chu, W. S. Hobson, J. Lopata, C. R. Abernathy, S. J. Pearton and J. W. Lee, “Self-aligned process for emitter- and base-regrowth GaN HBTs and BJTs,” Solid-State Electron., vol. 45, 243 (2001).
[18] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Graded-emitter AlGaN/GaN heterojunction bipolar transistors,” Electron. Lett., vol. 36, 1239 (2000).
[19] B. S. Shellon, J. J. Huang, D. J. H. Lambert, T. G. Zhu, M. M. Wong, C. J. Eiting, H. K. Kwon, M. Feng and R. D. Dupuis, “AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition,” Electron. Lett., vol. 36, 80 (2000).
[20] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 22, 157 (2001).
[21] B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, vol. 48, 490 (2001).
[22] B. F. Chu-Kung, M. Feng, G. Walter, N. Holonyak, Jr., T. Chung, J. H. Ryou, J. Limb, D. Yoo, S. C. Shen, R. D. Dupuis, D. Keogh and P. M. Asbeck, “Graded-base InGaN/GaN heterojunction bipolar light-emitting transistors,” Appl. Phys. Lett., vol. 89, 082108 (2006).
[23] B. F. Chu-Kung, C. H. Wu,a G. Walter, M. Feng,b and N. Holonyak, Jr., T. Chung, J.-H. Ryou, and R. D. Dupuis, “Modulation of high current gain (??> 49) light-emitting InGaN/GaN heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 91, 232114 (2007).
[24] T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, B. Chu-Kung, M. Feng, D. M. Keogh and P. M. Asbeck, “Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design,” Appl. Phys Lett., vol. 88, 183501 (2006).
[25] D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R. D. Dupuis, “High current gain InGaN/GaN HBTs with 300 °C operating temperature,” Electron. Lett., 42, 661 (2006).
[26] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gains obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base,” Appl. Phys Lett., vol. 79, 380 (2001).
[27] K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp GaN bipolar transistor,” Appl. Phys Lett., vol. 80, 1225 (2002).
[28] K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp AlGaN/GaN heterojunction bipolar transistor with a low-resistance base layer,” Appl. Phys Lett., vol. 80, 3841 (2002).
[29] K. Kumakura and T. Makimoto, “High-voltage operation with high current gain of pnp AlGaN/GaN heterojunction bipolar transistors with thin n-type GaN base,” Appl. Phys Lett., vol. 86, 023506 (2005).
[30] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett., vol. 83, 1035 (2003).
[31] T. Makimoto, Y. Yamauchi and K. Kumakura, “High-power characteristics of GaN/InGaN double heterojunction bipolar transistors,” Appl. Phys Lett., vol. 84, 1964 (2004).
[32] T. Makimoto, Y. Yamauchi, T. Kido, K. Kumakura, Y. Taniyasu, M. Kasu and N. Matsumoto, “Strained thick p-InGaN layers for GaN/InGaN heterojunction bipolar transistors on sapphire substrates,” Jpn. J. Appl. Phys., vol. 44, 2722 (2005).
[33] Kazuhide Kumakura, and Toshiki Makimoto, “Carrier transport mechanisms of Pnp AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys Lett., vol. 92, 093504 (2008).
[34] Kazuhide Kumakura, and Toshiki Makimoto “High performance pnp AlGaN/GaN heterojunction bipolar transistors on GaN substrates,” Appl. Phys Lett., vol. 92, 153509 (2008).
[35] K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu and B. H. Lin, “Al0.17Ga0.83N/GaN heterojunction bipolar transistors fabricated by double mesa technology,” International Electronic Devices and Materials Symposium (IEDMS), 2006.
[36] Kuang-Po Hsueh, Yue-Ming Hisn, Jinn-Kong Sheu, Wei-Chih Lai, Chun-Ju Tun, Chia-Hung Hsu and Bi-Hsuan Lin, “Effects of Leakage Current and Schottky-like Ohmic Contact on the Characterization of Al0.17Ga0.83N/GaN HBTs,” Solid-State Electronics, vol. 51, pp. 1073-1078, 2007.
[37] Ruie-Cheng Yan, Chun-Ting Pan and Yue-Ming Hsin, “DC Performance of Al0.17Ga0.83N/GaN HBTs,” International Electronic Devices and Materials Symposium (IEDMS), 2008.
[38] Ren-Jie Hou, Chun-Ting Pan and Yue-Ming Hsin, “DC Characteristics of AZO/GaN Heterojunction Bipolar Transistors,” International Electronic Devices and Materials Symposium (IEDMS), 2008.
[39] Chun-Ting Pan, Ren-Jie Hou and Yue-Ming Hsin, “Electrical Characteristics of AZO/GaN and AZO/ZnO/GaN HBTs With P2S5 / (NH4)2S Treatments,” International Conference on Solid State Devices and Materials (SSDM), 2008.
[40] Chun-Ting Pan, Ren-Jie Hou, Yue-Ming Hsin and Hsien-Chin Chiu, “DC Characteristics of AZO/GaN Heterojunction Bipolar Transistors,” Electron. Lett., vol. 45, no. 4, 2009.
[41] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes,” Appl. Phys. Lett., vol. 77, no. 18, pp. 2810-2812, Oct. 2000.
[42] Sten Heikman, Stacia Keller, Steven P. DenBaars, and Umesh K. Mishra, “Mass transport regrowth of GaN for Ohmic contacts to AlGaN/GaN,” Appl. Phys. Lett., vol. 78, no. 19, pp. 2876-2878, May 2001.
[43] Tetsuya Akasaka, Toshio Nishida, Toshiki Makimoto, and Naoki Kobayashi, “An InGaN-based horizontal-cavity surface-emitting laser diode,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4104-4106, May 2004.
[44] S. Schmult, T. Siegrist, A. M. Sergent, M. J. Manfra, and R. J. Molnar, “Optimized growth of lattice-matched InxAl1−xN/GaN heterostructures by molecular beam epitaxy,” Appl. Phys. Lett., vol. 90, 021922 (2007).
[45] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys., vol. 81, 1315 (1997).
[46] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys Lett., vol. 74, 2289 (1999).
[47] C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy and R. J. Shul, “ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides,” Appl. Phys Lett., vol. 69, 1426 (1996).
[48] C. C. Kao, H. W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kuo and S. C. Wang, “Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching,” Materials Science and Engineering, B107, 283 (2004).
[49] J. L. Lee, L. Wei, S. Tanigawa, H. Oigawa, and Y. Nannichi, “Evidence for the passivation effect in (NH4)2Sx-treated GaAs observed by slow positrons,” Appl. Phys. Lett., vol. 58, 1167 (1991).
[50] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au Ohmic contacts to p-type GaN using surface treatment,” Appl. Phys.Lett., vol. 73, 2953 (1998).
[51] S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30, 55 (2000).
[52] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN,” Appl. Phys Lett., vol. 75, 4130 (1999).
[53] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable Single-Mode Operation of an 850-nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion,” IEEE Photonics. Technol. Lett., vol. 13, no. 4, pp. 226-268, 2001.
[54] T. Palacios, C.-S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, “High-Performance E-Mode AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 428-430, 2006.
[55] H. Xing, D. Jena, M. J. W. Rodwell, and U. K. Mishra, “Explanation of Anomalously High Current Gain Observed in GaN Based Bipolar Transistors,” IEEE Electron Device Lett., vol. 24, no. 1, pp.4-6, 2003.
[56] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., pt. 2, vol. 31, pp. L139–L142, 1992.
[57] K. P. Hsueh, “Studies of GaN-Based Heterojunction Bipolar Transistors,” Ph.D dissertation, National Central University, 2007.
[58] H. Xing, D. S. Green, H. Yu, et al., “Memory Effect and Redistribution of Mg into Sequentially Regrown GaN Layer by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 42, pp. 50-53 , 2003.
[59] W. E. Devaney, W. S. Chen, J. M. Stewart, and R. A. Mickelsen, “Structure and Properties of High Efficiency ZnO/CdZnS/CuInGaSe2 Solar Cells,” IEEE Trans. Electron Devices, vol. 37 no. 2, pp. 428-433, 1990.
[60] J. P. Zhang, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, and X. J. Wang, “Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures,” J. Appl. Phys., 102, 114903 (2007).
[61] Kuang-Po Hsueh, Shou-Chien Huang, Ching-Tai Li, Yue-Ming Hsin, Jinn-Kong Sheu, Wei-Chih Lai, and Chun-Ju Tun, “Temperature-dependent study of n-ZnO/p-GaN diodes,” Appl. Phys. Lett., vol. 90, 132111,( 2007).
[62] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 041301, (2005).
[63] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, no. 3, pp. 1363-1398, 1994.
[64] F. Hamdani, A. Botchkarev, W. Kim, H. Morkoç¸ M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, David J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel and P. Hemenger, “Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy,” Appl. Phys. Lett., vol. 70, no. 4, pp. 467-469, 1997.
[65] D. C. Look, B. Claflin, Ya. I. Alivov and S. J. Park, “The future of ZnO light emitters,” phys. stat. sol., (a) 201, no. 10, pp. 2203–2212, 2004.
[66] A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett., vol. 87, 122102 (2005).
[67] H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y. Lu, “Ta/Au Ohmic Contacts to n-Type ZnO,” J. Electron. Mater., vol. 32, no. 9, 2003.
[68] Huili G. Xing and Umesh K. Mishra, “Temperature Dependent I-V Characteristics of AlGaN/GaN HBTs and GaN BJTs,” International Journal of High Speed Electronics and Systems, vol. 14, no. 3, 819-824 (2004).
[69] S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York: Wiley-Interscience, 1981.
[70] Y. Igasaki, and H. Saito, “The effects of deposition rate on the structural and electrical properties of ZnO: Al films deposited on (1120) oriented sapphire substrates,” J. Appl. Phys., vol. 70, 3613 (1991).
[71] W. S. Lau, S. J. Fonash, “Highly transparent and conducting zinc oxide films deposited by activated reactive evaporation,” J. Electron. Mater., vol. 16 no. 3, pp. 141-149, 1987.
[72] H. Y. Kim, J. H. Kim, Y. J. Kim, K. H. Chae, C. N. Whang, J. H. Song, and S. Im, “Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/n-Si structures,” Opt. Mater., vol. 17, pp. 141-144, 2001.
[73] S. Major, and K.L. Chopra, “Indium-doped zinc oxide films as transparent electrodes for solar cells,” Sol. Energy Mater. Vol. 17, pp. 319-327, 1998.
[74] H. Kim, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi and D.B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett., vol. 74 no. 23, pp. 3444-3446, 1999.
[75] H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, D.B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films, vol. 377-378, pp. 798-802, 2000.
[76] Liann-Be Chang, Chia-Hwa Chang, Ming-Jer Jeng, Hsien-Chin Chiu, and Hung-Fei Kuo, “Barrier Height Enhancement of AlxGa1−xN/GaN Schottky Diodes Prepared by P2S5/(NH4)2S Treatments” Electrochemical and Solid-State Lett., 10 (3), pp. H79-H81, 2007.
[77] H. Sugahrara, M. Oshima, H. Oigawa, H. Shigekawa, and Y. Nannichi, “Synchrotron radiation photoemission analysis for (NH4)2Sx-treated GaAs,” J. Appl. Phys., 69, 4349 (1991).
[78] M. J. Jeng, H. T. Wang, L. B. Chang, Y. C. Cheng, and S. T. Chou, “Barrier height enhancement of Ag/n-GaAs and Ag/n-InP Schottky diodes prepared by P2S5/(NH4)2Sx and HF treatments,” J. Appl. Phys., 86, 6261 (1999).
[79] S. Nakamura, M. Senoh, S. Nagahata, N. Iwasa, T. Yamada, T.Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. vol. 72, no. 2, 211 (1998).
[80] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, J. Cryst, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” Journal of Crystal Growth. 144, pp.133- 140 (1994).
[81] A. Usui, H. Sunakawa, A. Sakai and A. Yamaguchi, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,” Jpn . J. Appl. Phys. 36, pp. L899-L902 (1997).
[82] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy,” phys. stat. sol. (a) 188, No. 1, 121–125 (2001).
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明