參考文獻 |
References
[1] Nicolas Defrance, Virginie Hoel, Yannick Douvry, Jean Claude De Jaeger, Christophe Gaquière, Xiao Tang, Michel Rousseau, Marie Antoinette di Forte-Poisson, James Thorpe, Hacène Lahreche, and Robert Langer, “AlGaN/GaN HEMT High Power Densities on SiC/SiO2/poly-SiC Substrates,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 596-598, 2009.
[2] Jie Liu, Yugang Zhou, Jia Zhu, Yong Cai, Kei May Lau, and Kevin J. Chen, “DC and RF Characteristics of AlGaN/GaN/InGaN/GaN Double-Heterojunction HEMTs,” IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 2-10, 2007.
[3] S. L. Delage, D. Floriot, and C. Brylinski, “Solid state RF power amplifiers: status and perspective,” The 10th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications (EDMO), pp. 136-142, 2002.
[4] S. Yoshida and J. Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys., vol. 85, no. 11, pp. 7931-7934, 1999.
[5] S. N. Mohammad and H. Morkoç, “Progress and prospects of group-III nitride semiconductors,” Prog. Quantum Electronics, vol. 20, no. 5/6 pp. 361-525, 1996.
[6] J. C. Zolper, “A review of junction field effect transistors for high-temperature and high-power electronics,” Solid-State Electronics, vol. 42, no. 12, pp. 2153-2156, 1998
[7] P. Kozodoy, X. Huili, S. P. DenBaars, U. K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W. C. Mitchel, “Heavy doping effects in Mg-doped GaN,” J. Appl. Phys., vol. 87, no. 4, pp. 1832-1835, 2000.
[8] S. M. Sze, Modern Semiconductor Device Physics. Wiley-Interscience, New York, 1998.
[9] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 277-279, June 1999.
[10] L. S. McCarthy, I. P. Smorchkova, P. Fini, M. J. W. Rodwell, J. Speck, S. P. DenBaars and U. K. Mishra, “Small signal RF performance of AlGaN/GaN heterojunction bipolar transistor,” Electron Lett., 38, 144 (2002).
[11] L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices, 48, 543 (2001).
[12] L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys. Lett., 78, 2235 (2001).
[13] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (> 80V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, 2457 (2000).
[14] H. Xing, P. M. Chavarkar, S. Keller, S. P. DenBaars and U. K. Mishra, “Very high voltage operation (> 330 V) with high current gain of AlGaN/GaN HBTs,” IEEE Electron Device Lett., vol. 24, 141 (2003).
[15] X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett., vol. 3, 144 (2000).
[16] F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron., vol. 44, 239 (2000).
[17] K. P. Lee, A. P. Zhang, G. Dang, F. Ren, J. Han, S. N. G. Chu, W. S. Hobson, J. Lopata, C. R. Abernathy, S. J. Pearton and J. W. Lee, “Self-aligned process for emitter- and base-regrowth GaN HBTs and BJTs,” Solid-State Electron., vol. 45, 243 (2001).
[18] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Graded-emitter AlGaN/GaN heterojunction bipolar transistors,” Electron. Lett., vol. 36, 1239 (2000).
[19] B. S. Shellon, J. J. Huang, D. J. H. Lambert, T. G. Zhu, M. M. Wong, C. J. Eiting, H. K. Kwon, M. Feng and R. D. Dupuis, “AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition,” Electron. Lett., vol. 36, 80 (2000).
[20] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 22, 157 (2001).
[21] B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, vol. 48, 490 (2001).
[22] B. F. Chu-Kung, M. Feng, G. Walter, N. Holonyak, Jr., T. Chung, J. H. Ryou, J. Limb, D. Yoo, S. C. Shen, R. D. Dupuis, D. Keogh and P. M. Asbeck, “Graded-base InGaN/GaN heterojunction bipolar light-emitting transistors,” Appl. Phys. Lett., vol. 89, 082108 (2006).
[23] B. F. Chu-Kung, C. H. Wu,a G. Walter, M. Feng,b and N. Holonyak, Jr., T. Chung, J.-H. Ryou, and R. D. Dupuis, “Modulation of high current gain (??> 49) light-emitting InGaN/GaN heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 91, 232114 (2007).
[24] T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, B. Chu-Kung, M. Feng, D. M. Keogh and P. M. Asbeck, “Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design,” Appl. Phys Lett., vol. 88, 183501 (2006).
[25] D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R. D. Dupuis, “High current gain InGaN/GaN HBTs with 300 °C operating temperature,” Electron. Lett., 42, 661 (2006).
[26] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gains obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base,” Appl. Phys Lett., vol. 79, 380 (2001).
[27] K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp GaN bipolar transistor,” Appl. Phys Lett., vol. 80, 1225 (2002).
[28] K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp AlGaN/GaN heterojunction bipolar transistor with a low-resistance base layer,” Appl. Phys Lett., vol. 80, 3841 (2002).
[29] K. Kumakura and T. Makimoto, “High-voltage operation with high current gain of pnp AlGaN/GaN heterojunction bipolar transistors with thin n-type GaN base,” Appl. Phys Lett., vol. 86, 023506 (2005).
[30] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett., vol. 83, 1035 (2003).
[31] T. Makimoto, Y. Yamauchi and K. Kumakura, “High-power characteristics of GaN/InGaN double heterojunction bipolar transistors,” Appl. Phys Lett., vol. 84, 1964 (2004).
[32] T. Makimoto, Y. Yamauchi, T. Kido, K. Kumakura, Y. Taniyasu, M. Kasu and N. Matsumoto, “Strained thick p-InGaN layers for GaN/InGaN heterojunction bipolar transistors on sapphire substrates,” Jpn. J. Appl. Phys., vol. 44, 2722 (2005).
[33] Kazuhide Kumakura, and Toshiki Makimoto, “Carrier transport mechanisms of Pnp AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys Lett., vol. 92, 093504 (2008).
[34] Kazuhide Kumakura, and Toshiki Makimoto “High performance pnp AlGaN/GaN heterojunction bipolar transistors on GaN substrates,” Appl. Phys Lett., vol. 92, 153509 (2008).
[35] K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu and B. H. Lin, “Al0.17Ga0.83N/GaN heterojunction bipolar transistors fabricated by double mesa technology,” International Electronic Devices and Materials Symposium (IEDMS), 2006.
[36] Kuang-Po Hsueh, Yue-Ming Hisn, Jinn-Kong Sheu, Wei-Chih Lai, Chun-Ju Tun, Chia-Hung Hsu and Bi-Hsuan Lin, “Effects of Leakage Current and Schottky-like Ohmic Contact on the Characterization of Al0.17Ga0.83N/GaN HBTs,” Solid-State Electronics, vol. 51, pp. 1073-1078, 2007.
[37] Ruie-Cheng Yan, Chun-Ting Pan and Yue-Ming Hsin, “DC Performance of Al0.17Ga0.83N/GaN HBTs,” International Electronic Devices and Materials Symposium (IEDMS), 2008.
[38] Ren-Jie Hou, Chun-Ting Pan and Yue-Ming Hsin, “DC Characteristics of AZO/GaN Heterojunction Bipolar Transistors,” International Electronic Devices and Materials Symposium (IEDMS), 2008.
[39] Chun-Ting Pan, Ren-Jie Hou and Yue-Ming Hsin, “Electrical Characteristics of AZO/GaN and AZO/ZnO/GaN HBTs With P2S5 / (NH4)2S Treatments,” International Conference on Solid State Devices and Materials (SSDM), 2008.
[40] Chun-Ting Pan, Ren-Jie Hou, Yue-Ming Hsin and Hsien-Chin Chiu, “DC Characteristics of AZO/GaN Heterojunction Bipolar Transistors,” Electron. Lett., vol. 45, no. 4, 2009.
[41] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes,” Appl. Phys. Lett., vol. 77, no. 18, pp. 2810-2812, Oct. 2000.
[42] Sten Heikman, Stacia Keller, Steven P. DenBaars, and Umesh K. Mishra, “Mass transport regrowth of GaN for Ohmic contacts to AlGaN/GaN,” Appl. Phys. Lett., vol. 78, no. 19, pp. 2876-2878, May 2001.
[43] Tetsuya Akasaka, Toshio Nishida, Toshiki Makimoto, and Naoki Kobayashi, “An InGaN-based horizontal-cavity surface-emitting laser diode,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4104-4106, May 2004.
[44] S. Schmult, T. Siegrist, A. M. Sergent, M. J. Manfra, and R. J. Molnar, “Optimized growth of lattice-matched InxAl1−xN/GaN heterostructures by molecular beam epitaxy,” Appl. Phys. Lett., vol. 90, 021922 (2007).
[45] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys., vol. 81, 1315 (1997).
[46] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys Lett., vol. 74, 2289 (1999).
[47] C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy and R. J. Shul, “ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides,” Appl. Phys Lett., vol. 69, 1426 (1996).
[48] C. C. Kao, H. W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kuo and S. C. Wang, “Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching,” Materials Science and Engineering, B107, 283 (2004).
[49] J. L. Lee, L. Wei, S. Tanigawa, H. Oigawa, and Y. Nannichi, “Evidence for the passivation effect in (NH4)2Sx-treated GaAs observed by slow positrons,” Appl. Phys. Lett., vol. 58, 1167 (1991).
[50] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au Ohmic contacts to p-type GaN using surface treatment,” Appl. Phys.Lett., vol. 73, 2953 (1998).
[51] S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30, 55 (2000).
[52] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN,” Appl. Phys Lett., vol. 75, 4130 (1999).
[53] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable Single-Mode Operation of an 850-nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion,” IEEE Photonics. Technol. Lett., vol. 13, no. 4, pp. 226-268, 2001.
[54] T. Palacios, C.-S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, “High-Performance E-Mode AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 428-430, 2006.
[55] H. Xing, D. Jena, M. J. W. Rodwell, and U. K. Mishra, “Explanation of Anomalously High Current Gain Observed in GaN Based Bipolar Transistors,” IEEE Electron Device Lett., vol. 24, no. 1, pp.4-6, 2003.
[56] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., pt. 2, vol. 31, pp. L139–L142, 1992.
[57] K. P. Hsueh, “Studies of GaN-Based Heterojunction Bipolar Transistors,” Ph.D dissertation, National Central University, 2007.
[58] H. Xing, D. S. Green, H. Yu, et al., “Memory Effect and Redistribution of Mg into Sequentially Regrown GaN Layer by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 42, pp. 50-53 , 2003.
[59] W. E. Devaney, W. S. Chen, J. M. Stewart, and R. A. Mickelsen, “Structure and Properties of High Efficiency ZnO/CdZnS/CuInGaSe2 Solar Cells,” IEEE Trans. Electron Devices, vol. 37 no. 2, pp. 428-433, 1990.
[60] J. P. Zhang, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, and X. J. Wang, “Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures,” J. Appl. Phys., 102, 114903 (2007).
[61] Kuang-Po Hsueh, Shou-Chien Huang, Ching-Tai Li, Yue-Ming Hsin, Jinn-Kong Sheu, Wei-Chih Lai, and Chun-Ju Tun, “Temperature-dependent study of n-ZnO/p-GaN diodes,” Appl. Phys. Lett., vol. 90, 132111,( 2007).
[62] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 041301, (2005).
[63] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, no. 3, pp. 1363-1398, 1994.
[64] F. Hamdani, A. Botchkarev, W. Kim, H. Morkoç¸ M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, David J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel and P. Hemenger, “Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy,” Appl. Phys. Lett., vol. 70, no. 4, pp. 467-469, 1997.
[65] D. C. Look, B. Claflin, Ya. I. Alivov and S. J. Park, “The future of ZnO light emitters,” phys. stat. sol., (a) 201, no. 10, pp. 2203–2212, 2004.
[66] A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett., vol. 87, 122102 (2005).
[67] H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y. Lu, “Ta/Au Ohmic Contacts to n-Type ZnO,” J. Electron. Mater., vol. 32, no. 9, 2003.
[68] Huili G. Xing and Umesh K. Mishra, “Temperature Dependent I-V Characteristics of AlGaN/GaN HBTs and GaN BJTs,” International Journal of High Speed Electronics and Systems, vol. 14, no. 3, 819-824 (2004).
[69] S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York: Wiley-Interscience, 1981.
[70] Y. Igasaki, and H. Saito, “The effects of deposition rate on the structural and electrical properties of ZnO: Al films deposited on (1120) oriented sapphire substrates,” J. Appl. Phys., vol. 70, 3613 (1991).
[71] W. S. Lau, S. J. Fonash, “Highly transparent and conducting zinc oxide films deposited by activated reactive evaporation,” J. Electron. Mater., vol. 16 no. 3, pp. 141-149, 1987.
[72] H. Y. Kim, J. H. Kim, Y. J. Kim, K. H. Chae, C. N. Whang, J. H. Song, and S. Im, “Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/n-Si structures,” Opt. Mater., vol. 17, pp. 141-144, 2001.
[73] S. Major, and K.L. Chopra, “Indium-doped zinc oxide films as transparent electrodes for solar cells,” Sol. Energy Mater. Vol. 17, pp. 319-327, 1998.
[74] H. Kim, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi and D.B. Chrisey, “Indium tin oxide thin films for organic light-emitting devices,” Appl. Phys. Lett., vol. 74 no. 23, pp. 3444-3446, 1999.
[75] H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, D.B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films, vol. 377-378, pp. 798-802, 2000.
[76] Liann-Be Chang, Chia-Hwa Chang, Ming-Jer Jeng, Hsien-Chin Chiu, and Hung-Fei Kuo, “Barrier Height Enhancement of AlxGa1−xN/GaN Schottky Diodes Prepared by P2S5/(NH4)2S Treatments” Electrochemical and Solid-State Lett., 10 (3), pp. H79-H81, 2007.
[77] H. Sugahrara, M. Oshima, H. Oigawa, H. Shigekawa, and Y. Nannichi, “Synchrotron radiation photoemission analysis for (NH4)2Sx-treated GaAs,” J. Appl. Phys., 69, 4349 (1991).
[78] M. J. Jeng, H. T. Wang, L. B. Chang, Y. C. Cheng, and S. T. Chou, “Barrier height enhancement of Ag/n-GaAs and Ag/n-InP Schottky diodes prepared by P2S5/(NH4)2Sx and HF treatments,” J. Appl. Phys., 86, 6261 (1999).
[79] S. Nakamura, M. Senoh, S. Nagahata, N. Iwasa, T. Yamada, T.Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. vol. 72, no. 2, 211 (1998).
[80] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, J. Cryst, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” Journal of Crystal Growth. 144, pp.133- 140 (1994).
[81] A. Usui, H. Sunakawa, A. Sakai and A. Yamaguchi, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,” Jpn . J. Appl. Phys. 36, pp. L899-L902 (1997).
[82] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy,” phys. stat. sol. (a) 188, No. 1, 121–125 (2001).
|