博碩士論文 92541004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:13.58.107.78
姓名 楊宗育(Tsung-Yu Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波/毫米波頻段寬頻與低損耗金氧半導體平衡至不平衡轉換器之研製及其應用
(Microwave / Millimeter-Wave Broadband and Low-loss CMOS Balun Design and Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究方向是著重於發展標準金氧半導體製程設計微波與毫米波段之寬頻與低損
耗平衡不平衡轉換器及其在頻率轉換器之應用。在本論文中,利用對稱與非對稱架構技巧
設計了三種多層式平衡不平衡轉換器,此改良多層式非對稱平衡不平衡轉換器可用耦合線
之等效參數與其對應之阻抗值完成初步的合成設計,並可快速的建構一高特性馬遜平衡不
平衡轉換器。所提出的解析步驟與設計方法可借由理論分析與實作電路做相互驗證並應用
於平衡不平衡轉換器。此架構有別於一般傳統平面及螺旋堆疊耦合方式,本論文所發展之
曲折堆疊耦合馬遜平衡不平衡轉換器更具有寬頻及低介入損耗等特性。
所提出之平衡不平衡轉換器晶片面積均小於 0.06 平方毫米。其中非對稱式平衡不平
衡轉換器可達到 120 % 頻寬,在 16.5 到 67 GHz 的頻段中,其介入損耗維持在 7 dB 以
內。我們也利用三個不同的平衡不平衡轉換器應用於五個頻率轉換器,皆使用商用 0.18 微
米金氧半導體製程實現。兩個寬頻的被動式單平衡混頻器達成 14.5 dB和 15 dB以下的轉
換損耗,在 16 到 46 GHz 和 15 到 60 GHz 的頻段中,晶片面積均小於 0.24 平方毫
米。利用一個縮小率為 80 %的微小化平衡不平衡轉換器達成 17 GHz 被動式單平衡式混
頻器,達成 6.8 dB以下的轉換損耗,晶片面積小於 0.24 平方毫米。被動式雙平衡混頻器
與倍頻器可達成 15 dB和 15.5 dB以下的轉換損耗,在 25 到 56 GHz 和 25 到 75 GHz
的頻段中,晶片面積小於 0.34 與 0.2 平方毫米。另外,一個寬頻的主動式單端混頻器達
成 0 dB以上的轉換增益,只需要 20 mW 以內的直流功率,在 7 到 65 GHz 的頻段中。
一個本地振盪倍頻器達成 28 GHz 被動式單端混頻器,達成 11 dB以下的轉換損耗。
摘要(英) The purpose of this dissertation is to develop broadband and low-loss Marchand baluns in
microwave and millimeter-wave frequencies and their applications in standard CMOS-based
technology. Three multilayer baluns using symmetric and asymmetric techniques are
demonstrated in this dissertation. The equivalent parameters of the coupled-line and their
impedance levels are used to synthesis the modified asymmetric broadside coupled balun design
up to 65 GHz. The design procedure for the balun is verified by practical implementation. The
measured results are well agreed with the theoretical analysis. Compare with the conventional
planar and spiral stack Marchand baluns; the proposed meandering multilayer coupled Marchand
balun demonstrates the better bandwidth and insertion loss performance.
These balun chip sizes are all in 0.06 mm2. An asymmetric balun achieves a bandwidth of
120 % with an insertion loss of 7 dB from 16.5 to 67 GHz. Five frequency-conversion circuits
are further proposed and implemented in commercial TSMC 0.18-μm CMOS processes. These
mixers and doubler adopting a non uniplanar balun feature a wide bandwidth performance with
very compact size. Two broadband passive single-balanced mixers present a conversion loss
better than 14.5 and 15 dB from 16 to 46 GHz and 15 to 60 GHz, the chip sizes are in 0.24 mm2.
A 17 GHz passive single-balanced mixer with a miniaturized balun to reduce the chip area by 80
% and yields a conversion loss of better than 6.8 dB with a chip size of 0.24 mm2. Two passive
double-balanced mixer and frequency doubler perform a conversion loss better than 15 and 15.5
dB from 25 to 56 GHz and 25 to 75 GHz, the chip sizes are 0.34 and 0.24 mm2, respectively.
Furthermore, a wideband active single-ended mixer demonstrates a conversion gain better than 0
dB under a dc power dissipation of 20 mW from 7 to 65 GHz. The chip size is 0.15 mm2. A
8
passive 28 GHz drain-pumped passive mixer with an LO frequency doubler in sub-harmonic
operation and achieves the conversion loss of better than 11 dB.
關鍵字(中) ★ 低損耗
★ 金氧半導體
★ 平衡至不平衡轉換器
★ 寬頻
★ 微波/毫米波
關鍵字(英) ★ Microwave / Millimeter-Wave
★ Broadband
★ Low-loss
★ CMOS
★ Balun
論文目次 Chapter 1 Introduction...............................................................................................................1
1.1 Motivation.............................................................................................................................1
1.2 Literature Survey...................................................................................................................2
1.3 Contributions.......................................................................................................................7
1.4 Dissertation Organization….................................................................................................9
Chapter 2 Introduction of Integrated Baluns…………………………..……..……...............11
2.1 Introduction...........................................................................................................................11
2.2 Active Baluns.........................................................................................................................13
2.2.1 Single-transistor Phase Splitters.....................................................................................13
2.2.2 Differential Pair Baluns………......................................................................................16
2.3 Passive Baluns…...................................................................................................................18
2.3.1 Rat-race Baluns ..............................................................................................................18
2.3.2 Lumped-element Baluns.................................................................................................19
2.3.3 Power Splitter Based Baluns..........................................................................................20
2.3.4 Planar Transformer Baluns............................................................................................21
2.3.5 Uniplanar CPW-to-CPS Baluns......................................................................................21
2.3.6 Coupled Line Baluns......................................................................................................22
2.3.7 Marchand Baluns .........................................................................................................23
Chapter 3 Analysis of Broadside Coupled CMOS Marchand Balun………..………...........26
3.1 Reference Transmission Line...............................................................................................26
3.2 Analysis of Balun Impedance and 3-D CMOS Structure..................................................28
3.3 Design and Verification of the Broadside Coupled Balun................................................34
3.4 Summary................................................................................................................................40
Chapter 4 Baluns Design and Implementation……………………..…......……….……..…..41
4.1 Symmetric Broadside Coupled Balun.................................................................................41
4.2 Asymmetric Broadside Coupled Balun...............................................................................43
4.3 Asymmetric Broadside Coupled Dual Balun.....................................................................46
4.4 Summary..............................................................................................................................50
Chapter 5 Millimeter-Wave CMOS Frequency Converters………………………...............52
5.1 A 28 GHz Drain-pumped Sub-harmonic Mixer with LO Doubler...................................52
5.2 A 7-65 GHz Mixer with Thin-film Lange Coupler and Darlington Cell………...……....56
5.3 A 17 GHz Reduce-sized Single Balanced Mixer ..........................................................61
5.4 A 16-46 Single Balanced Mixer Using Symmetric Multilayer Baluns.............................65
5.5 A 15-60 GHz Single Balanced Mixer Using Asymmetric Multilayer Baluns.................68
5.6 A 25-56 GHz Double Balanced Mixer Using Asymmetric Multilayer Baluns …............71
5.7 A 25-75 GHz Double Balanced Doubler Using Asymmetric Multilayer Baluns…….....74
5.8 Summary……………………................................................................................................80
Chapter 6 Conclusions.................................................................................................................82
Appendix ................................................................................................................84
References................................................................................................................................104
Publication List..........................................................................................................................120
參考文獻 [1] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol.
39, no. 2, pp. 368-373, Feb. 2004.
[2] S. Reynolds, B. Floyd, U. Pfeiffer, and T. Zwick, “60GHz transceiver circuits in SiGe
bipolar technology,” IEEE ISSCC Dig. Tech. Papers, Feb. 2004, vol. 47, pp. 442-443.
[3] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, ”Millimeterwave CMOS
design,” IEEE J. Solid-State Circuits, vol. 40, Issue 1,pp. 144 – 155, Jan. 2005.
[4] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-wave CMOS circuit
design,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 472-477, Feb. 2005.
[5] T. O. Dickson, M. A. LaCroix, S. Boret, D. Gloria, R. Beekens, and S. P. Voinigescu,
“30-100 GHz inductors and transformers for millimeterwave (Bi)CMOS integrated
circuits,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 123–134, Jan. 2005.
[6] H. Y. Chang, P.S. Wu, T.W. Huang, H. Wang, C.L. Chang, and J.G.J. Chern, “Design
and analysis of CMOS broad-band compact highlinearity modulators for gigabit
microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol.54,
Issue 1, pp.20 – 30, Jan. 2006.
[7] H. K. Chiou, and H. H. Lin, “A miniature MMIC double doubly balanced mixer using
lumped dual balun for high dynamic receiver application, ” IEEE Microwave and Guided
Wave Letters, vol. 7, No. 8, pp. 227-8, Aug. 1997.
[8] H. K. Chiou, H. H. Lin, and C. Y. Chang, “Lumped-Element Compensated
High/Low-pass Balun Design for MMIC Double-Balanced Mixer,” IEEE Microwave
Guided Wave lett., vol. 7, no. 8, pp. 248-250, Aug. 1997.
[9] P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped
122
resistive mixer MMIC using a lumped-element high-pass/band-pass balun,” IEEE
Microw. Wireless Compon. Lett., vol.15, Issue: 2, pp. 62- 64, Feb. 2005.
[10] D. Kuylenstierna and P. Linnér, “Design of broad-band lumped-element baluns with
inherent impedance transformation,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12,
pp. 2739-2745, Dec. 2004.
[11] J. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State
Circuits, vol. 35, no. 9, pp. 1368-1382, Sep. 2000.
[12] C. Nguyen and D. Smith, “Novel miniaturised wideband baluns for MIC and MMIC
applications,” Electron. Lett., vol. 29, no. 12, pp. 1060-1061, June 1993.
[13] C.C. Meng, T.H. Wu, and M.C. Lin, “Compact 5.2-GHz GaInP/GaAs HBT Gilbert
upconverter using lumped rat-race hybrid and current combiner,” IEEE
Microw.Wireless Compon. Lett., vol. 15, no. 10, Oct 2005.
[14] P.S. Wu, C.H. Wang, T.W. Huang, and H. Wang, “Compact and broadband
millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microw.
Theory Tech., vol. 53, no. 10, pp. 3106–3114, Oct. 2005.
[15] H. K. Chiou, W. R. Lian, and T. Y. Yang, “A Miniature Q-Band Balanced
Sub-harmonically Pumped Image Rejection Mixer,” IEEE Microw.Wireless Compon.
Lett., vol. 17, issue 6, pp. 463 – 465, June 2007
[16] T. Y. Yang, W.R. Lian, C. C. Yang, and H. K. Chiou, “A Compact V Band Star Mixer
Using Compensated Overlay Capacitors in Dual Baluns,” IEEE Microw.Wireless
Compon. Lett., vol.17, issue 7, pp. 537-539, July 2007.
[17] B. J. Minnis and M. Healy, “New broadband balun structures for monolithic microwave
integrated circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1991, pp. 425-428.
123
[18] E. Valletta, J. Van Beek, A. Den Defier, N. hlsford, H. F. F. Jos, L.C.N. de Vreede, L. K.
Nanver, and J. N. Burghartz, “Design and characterization of integrated passive
elements on high ohmic silicon, ” in IEEE MTT-S Int. Microwave Symp. Dig., 8-13 June,
2003, vol.2, pp. 1235-1238.
[19] H. Y. Yu, S. S. Choi, S. H. Kim, and Y. H. Kim, “K-band balun with slot pattern ground
for wide operation using 0.18-μm CMOS technology,” Electron. Lett., vol.43, no. 5, 1
Jan. 2007.
[20] P. S. Wu, H.Y. Chang, M. D. Tsai, T. W. Huang, and H. Wang, “New Miniature
15-20-GHz Continuous-Phase/ Amplitude Control MMICs Using 0.18-μm CMOS
technology,” IEEE Trans. Microw. Theory Tech., vol.54, no.1, pp.10-19, Jan. 2006.
[21] W. Z. Chen, W. H. Chen, and K. C. Hsu, “Three-Dimensional Fully Symmetric
Inductors, Transformer, and Balun in CMOS Technology,” IEEE Trans. on Circuits and
Systems I, vol.54, issue 7, pp.1413 -1423, July 2007.
[22] Lai Chee-Hong Ivan, Inui Chiaki, and Fujishima Minoru, “CMOS on-chip stacked
Marchand balun for millimeter-wave application,” IEICE Electronics Express, vol. 4,
No. 2, pp. 48-53, 2007.
[23] J. X. Liu, C. Y. Hsu, H. R. Chung, and C. Y. Chen, “A 60-GHz Millimeter-wave CMOS
Marchand Balun,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 3-5
June 2007, pp. 445-448.
[24] S. Pruvost, I. Telliez, F. Danneville, G. Dambrine, N. Rolland, and F. Pourchon, “A 40
Ghz single-ended down-conversion mixer in 0.13-μm SiGeC BiCMOS HBT,” IEEE
Microw.Wireless Compon. Lett., vol. 15, no. 8, pp. 496–498, Aug. 2005.
[25] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. v. Buren, M. L. Schmatz, C. Menolfi,
124
T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30–40-GHz drain-pumped passive-mixer
MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech.,
vol. 52, no. 5, pp. 1382–1391, May 2004.
[26] F. Ellinger, “26.5–30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with
high linearity for WLAN,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp.
2559–25658, Aug. 2005.
[27] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz
single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw. Wireless
Compon. Lett., vol. 16, no. 1, pp. 25–27, 2006.
[28] Ivan C. H. Lai, Yuki Kambayashi, and Minoru Fujishima, “60-GHz CMOS
Down-Conversion Mixer with Slow-Wave Matching Transmission Lines,” in Proc.
IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2006, pp. 195–198.
[29] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz
down-converting CMOS single-gate mixer,” in Proc. IEEE Radio Frequency Integrated
Circuits (RFIC) Symp., Jun. 2005, pp. 163–166.
[30] T. N. Trinh, W. S. Wong, D. Li, and J. R. Kessler, “Ion implanted W-band monolithic
balanced mixers for broadband applications,” Microwave and Millimeter-Wave
Monolithic Circuits, vol. 87, pp. 89-92, June 1987.
[31] K. Kamozaki, N. Kurita, T. Tanimoto, H. Ohta, T. Nakamura, and Hiroshi Kondoh,
“50-100 GHz Octave Band MMIC Mixers,” IEEE Radio Frequency Integrated Circuit
(RFIC) Symp. Dig., June 1997, pp. 95-98.
[32] A. R. Barnes, P. Munday, and M. T. Moore, “A comparison of W-band monolithic
resistive mixer architectures,” IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp.
125
1867-1870.
[33] Y. Mimino, K. Nakamura, Y. Hasegawa, Y. Aoki, S. Kuroda, and T. Tokumitsu, “A 60
GHz millimeter-wave MMIC chipset for broadband wireless access system frontend,”
IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp. 1721-1724.
[34] M. Kimishima, T. Ataka, and H. Okabe, “A family of Q, V and W-band monolithic
resistive mixers,” IEEE MTT-S Int. Microwave Symp. Dig., June 2001, pp. 115-118.
[35] P. S. Wu, C. S. Lin, T. W. Huang, H. Wang, “A millimeter-wave ultra-compact
broadband diode mixer using modified Marchand balun,” Gallium Arsenide and Other
Semiconductor Application Symposium, 3-4 Oct. 2005, pp. 349-352.
[36] C. H. Lin, H. Z. Liu, C. K. Chu, H. K. Huang, C. C. Liu, and C. H. Chang, “A
Ku/K-band PHEMT Diode Single-balanced Mixer,” Solid-State and Integrated Circuit
Technology, Oct. 2006, pp.884-886.
[37] F. Ellinger, “26–34 Ghz CMOS mixer,” Electron. Lett., vol. 40, no. 22, 28, pp.
1417–1419, Oct. 2004.
[38] A. Verma, L. Gao, K. K. O, and J. Lin, “A K-band down-conversion mixer with
1.4-GHz bandwidth in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon.
Lett., vol. 15, no. 8, pp. 493–495, Aug. 2005.
[39] C. S. Lin, P. S.Wu, H. Y. Chang, and H. Wang, “A 9–50-GHz Gilbertcell
down-conversion mixer in 0.13-μm CMOS technology,” IEEE Microw. Wireless
Compon. Lett., vol. 16, no. 5, pp. 293–295, May 2006.
[40] M. D. Tsai and H. Wang, “A 0.3–25-GHz ultra-wideband mixer using commercial
0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp.
522–524, Nov. 2004.
126
[41] J. H. Tsai, P. S. Wu, C. S. Lin, T. W. Huang, John G. J. Chern, W. C. Huang, “A 25-75
GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology,” IEEE Microw.
Wireless Compon. Lett., vol. 17, no. 4, pp. 247-249, April 2007.
[42] C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband
millimeter-wave monolithic star mixers,” IEEE Trans. Microw. Theory Tech., vol. 56,
no. 4, pp. 793–802, April 2008.
[43] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using
gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. 53, no.
7, pp. 2435–2440, Jul. 2005.
[44] C. Y. Chang, C. K. Liao, and D. C. Niu, “A 1.5 to 37 GHz ultra-broadband MMIC
Mouw’s star mixer,” in Proc. Eur. Microw. Conf., Oct. 4–6, 2005, vol. 2, pp. 4–4.
[45] S. A. Maas and K. W. Chang, “A broad-band planar, doubly balanced monolithic
ka-band diode mixers,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp.
2330–2335, Dec. 1993.
[46] K. L. Deng and H. Wang, “A miniature broad-band pHEMT MMIC balanced distributed
doubler,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1257–1261, Apr. 2003.
[47] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,”
in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 443–446.
[48] C. C. Weng, Z. M. Tsai, and H. Wang, “A K-band miniature, broadband, high output
power HBT MMIC balanced doubler with integrated balun,” in IEEE Eur. Microw.
Conf. Dig., Oct. 4–6, 2005, vol. 3, pp. 1–3.
[49] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang,
“Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC
design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190–1199, Jun. 2007.
127
[50] B. Piemas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, “A broadband
and miniaturized V-band PHEMT frequency doubler,” IEEE Microw. GuidedWave Lett.,
vol. 10, no. 7, pp. 276–278, Jul. 2000.
[51] K. Nishikawa, B. Piernas, T. Nakagawa, and K. Araki, “Miniaturized and broadband
V-band balanced frequency doubler for highly integrated 3-D MMIC,” in IEEE MTT-S
Int. Microwave Symp. Dig., Jun. 2002, vol. 1, pp. 351–354.
[52] K. Nishikawa, T. Enoki, S. Sugitani, I. Toyoda, and K. Tsunekawa, “Low-voltage and
broadband V-band InP HEMT frequency doubler MMIC,” in IEEE MTT-S Int.
Microwave Symp. Dig., Jun. 12–17, 2005, pp. 45–48.
[53] F. Ellinger and H. Jackel, “Ultracompact SOI CMOS frequency doubler for low power
applications at 26.5–28.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 2,
pp. 53–55, Feb. 2004.
[54] M. Ferndahl, B. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90-nm
CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2004, vol. 1, pp. 179–182.
[55] M. Kaixue, M. Jianguo, J. Lin, O. Benghwee, S.Y. Kiat, and A. D. Manh, “800 MHz-2.5
GHz miniaturized multi-layer symmetrical stacked baluns for silicon based RF ICs, ”
IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 283–286.
[56] Y. J. Yoon, Lu Yicheng, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral
transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20,
issue 4, pp. 182–184, 1999.
[57] E. Valletta, J. Van Beek, A. Den Dekker, N. Pulsford, H.F.F. Jos, L.C.N. de Vreede,
L.K. Nanver, and J.N. Burghartz, “Design andcharacterization of integrated passive
128
elements on high ohmic silicon,” IEEE MTT-S Int. Microw. Symp. Dig., 2003, vol. 2, pp.
1235–1238.
[58] H.Y. Yu, S. S. Choi, S. H. Kim, and Y. H. Kim, “K-band balun with slot pattern ground
for wide operation using 0.18 μm CMOS technology,” Electron. Lett., vol. 43, pp.
51–52, 2007.
[59] P. S. Wu, H. Y. Chang, M. D. Tsai, T. W. Huang, and H. Wang, “New miniature
15–20-GHz continuous-phase/amplitude control MMICs using 0.18 μm CMOS
technology,” IEEE Trans. Microw. Theory Tech., vol. 54, issue 1, pp. 10–19, 2006.
[60] W. Z. Chen, and W. H. Chen, “Symmetric 3D passive components for RF ICs
application,” IEEE MTT-S Int. Microw. Symp. Dig., 2003, vol. 54, pp. A85–A88.
[61] H. Koizumi, S. Nagata, K. Tateoka, K. Kanazawa, and D. Ueda, “A GaAs single
balanced mixer MMIC with built-in active balun for personal communication systems,”
in Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1995, pp. 77–80.
[62] M. Goldfarb, J. Cole, and A. Platzker, “A novel MMIC biphase modulator with variable
gain using enhancement-mode FETS suitable for 3 V wireless applications,” in
Microwave and Millimeter-Wave Monolithic Circuits Symposium , May 1994, vol. I, pp.
99–102.
[63] M. Kawashima, T. Nakagawa, and K. Araki, “A novel broadband active balun,” in 33rd
European Microwave Conference, 2003, pp. 495–498.
[64] C. Viallon, D. Venturin, J. Graffeuil, and T. Parra, “Design of an Original K-Band
Active Balun with Improved Broadband Balanced Bheavior,” IEEE Microwave and
Wireless Comp. Letters, vol. 15, No 4, pp.280-282, April 2005.
[65] H. Ma, S. J. Fang, L. Fujiang, and H. Nakamura, “Novel active differential phase
129
splitters in RFIC for wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 46,
no. 12, pp. 2597–2603, Dec 1998.
[66] S. K. Altes, T. H. Chen, and L. J. Ragonese, “Monolithic RC all-pass networks with
constant-phase-difference outputs,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 12,
pp. 1533–1537, Dec 1986.
[67] S. March, “A wide band stripline hybrid ring,” IEEE Trans. Microw. Theory Tech., vol.
MTT-16, pp. 361, June 1968.
[68] C. H. Ho, L. Fan, and K. Chang, “Broad-band uniplanar hybrid-ring and branch-line
couplers,” IEEE Trans. Microw. Theory Tech., vol. 41, pp. 2116-2125, Dec. 1993.
[69] H. K. Chiou, Y. R. Juang, and H. H. Lin, “Miniature MMIC star double balanced mixer
using lumped dual balun,” Electron. Lett., vol. 33, no. 6, pp. 503-505, Mar. 1997.
[70] H. K. Chiou and H. H. Lin, “A miniature MMIC double doubly balanced mixer using
lumped dual balun for high dynamic receiver application,” IEEE Microw. Wireless
Compon. Lett., vol. 7, pp. 227, Aug. 1997.
[71] H. K. Chiou, H. H. Lin, and C. Y. Chang, “Lumped-element compensated high/low-pass
balun design for MMIC double-balanced mixer,” IEEE Microwave Guided Wave Lett.,
vol. 7, pp. 248–250, Aug. 1997.
[72] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State
Circuits, vol. 35, no. 9, pp. 1368–1381, Sept 2000.
[73] A. Zolfghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS
technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620–628, Apr 2001.
[74] J. P. Maligeorgos and J. R. Long, “A low-voltage 5.1-5.8-GHz image-reject receiver
with wide dynamic range,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1917–1926,
130
Dec 2000.
[75] A. Italia, L. La Paglia, A. Scuderi, F. Carrara, E. Ragonese, and G. Palmisano, “A
silicon bipolar trasmitter front-end for 802.11a and HIPERLAN2 wireless LANs,” IEEE
J. Solid-state Circuits, vol. 40, no. 7, pp. 1451–1459, Jul 2005.
[76] H. K. Chiou, C. Y. Chang, and H. H. Lin, “Balun design for uniplanar broad band
double balanced mixer,” Electron. Lett., vol. 31, pp. 211–212, Nov. 1995.
[77] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood,
MA: Artech House, 1999, pp. 399–403.
[78] S. A. Maas, The RF and Microwave Circuit Design Cookbook. Norwood, MA: Artech
House, 1998, pp. 109–114.
[79] K. S. Ang, Y. C. Leong, and C. H. Lee, “Multisection impedance-transforming
coupled-line baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 536-541, Feb.
2003.
[80] N. Marchand, “Transmission-line conversion transformers,” Electronics, vol. 17, no. 12,
pp. 142–145, 1944.
[81] A. M. Pavio and A. Kikel, “A monolithic or hybrid broadband compensated balun,” in
IEEE MTT-S Int. Microwave Symp. Dig., 1990, pp. 483–486.
[82] Y. J. Yoon, Y. C. Lu, Robert C. Frye, M. Y. Lau, P. R. Smith, L. Ahlquist, and D. P.
Kossives, “Design and characterization of multilayer spiral transmission- line baluns,”
IEEE Trans. Microw. Theory Tech., vol. 47, pp. 1841–1847, Sept. 1999.
[83] K. Nishikawa, I. Toyoda, and T. Tokumitsu, “Compact and broad-band
three-dimensional MMIC balun,” IEEE Trans. Microw. Theory Tech., vol. 47, no. I, pp.
96-98, Jan. 1999.
131
[84] ETSI HIPERLAN/2 Standard [Online]. Available: http://portal.etsi.org/
bran/kta/Hiperlan/hiperlan2.asp
[85] B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits Devices Mag.,
vol. 12, pp. 12-25, Dec. 1996.
[86] T. H. Lee, “5-GHz CMOS wireless LANs,” IEEE Trans. Microw. Theory Tech., vol. 50,
no. 1, pp. 268-280, Jan. 2002.
[87] V. Aparin and L. E. Larson, “Analysis and reduction of cross-modulation distortion in
CDMA receivers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1591-1602,
May 2003.
[88] Y. Ding and R. Harjani, “A +18 dBm IIP3 LNA in 0.35 μm CMOS,” IEEE Int.
Solid-State Circuits Conf., 2001, pp. 162-163.
[89] V. Aparin and L. E. Larson, “Linearization of monolithic LNAs using low-frequency
low-impedance input termination,” Europ. Solid-State Circ. Conf., Sep. 2003, pp.
137-140.
[90] B. Kim, J.S. Ko, and K. Lee, “A new linearization technique for MOSFET RF amplifier
using multiple gated transistors,” IEEE Microw. Guided Wave Lett., vol. 10, no. 9, pp.
371-373, Sep. 2000.
[91] B. Kim, J. Ko, and K. Lee, “Highly linear CMOS RF MMIC amplifier using multiple
gated transistors and its Volterra series analysis,” in IEEE MTT-S Int. Microwave Symp.
Dig., 2001, pp. 515-518.
[92] T. W. Kim, B. Kim, I. Nam, B. Ko, and K. Lee, “A low-power highly linear cascoded
multiple-gated transistor CMOS FR amplifier with 10 dB IP3 improvement,” IEEE
Microwave and Guided Wave Letters, vol. 13, no. 6, pp. 205-207, June 2003.
132
[93] V. Aparin, G. Brown, and L. E. Larson, “Linearization of CMOS LNA’s via optimum
gate biasing,” IEEE Int. Circuits Systems Symp., May 2004, vol. 4, pp. 748-751.
[94] T. Kim, B. Kim, and K. Lee, “Highly linear receiver front-end adopting MOSFET
transconductance linearization by multiple gated transistors,” IEEE J. Solid-State
Circuits, vol. 39, no. 1, pp. 223-229, Jan. 2004.
[95] I. Kwon, and K. Lee, “An Integrated Low Power Highly Linear 2.4-GHz CMOS
Receiver Front-End Based on Current Amplification and Mixing,” IEEE Microw.
Wireless Compon. Lett., vol. 15, no. 1, pp. 36-38, Jan. 2005.
[96] D. R. Webster, D. G. Haigh, J. B. Scott, and A. E. Parker, “Derivative superposition-A
linearization technique for ultra broadband systems,” IEE Wideband Circuits, Modeling,
Technology Colloq., pp. 311-314, May 1996.
[97] V. Aparin, and L. E. Larson, “Modified derivative superposition method for linearizing
FET low-noise amplifiers,” IEEE Radio Frequency Integrated Circuits Symposium, 6-8
June 2004, pp.105-108.
[98] V. Aparin, and L. E. Larson, “Modified derivative superposition method for linearizing
FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp.
571-581, Feb. 2005.
[99] T. S. Kim, and B. S. Kim, “Post-Linearization of Cascode CMOS Low Noise Amplifier
Using Folded PMOS IMD Sinker,” IEEE Microw. Wireless Compon. Lett.,vol. 16, no. 4,
April 2006.
[100] K. Namsoo, V. Aparin, K. Barnett, and C. Persico, “A cellular-band CDMA 0.25-μm
CMOS LNA linearized using active post-distortion,” IEEE J. Solid-State Circuits, vol.
41, issue 7, pp.1530-1534, July 2006.
133
[101] V. Aparin and P. Katzin, “Active GaAs MMIc band-pass filters with automatic
frequency tuning and insertion loss control,” IEEE J. Solid-State Circuits, vol. 30, pp.
1068-1073, Oct. 1995.
[102] P. Katzin, B. Bedard, and Y. Ayasli, “Narrow-band MMIc filters with automatic tuning
and Q-factor control,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993.
[103] J. A. Macedo, and M. A. Copeland, “A 1.9-GHz silicon receiver with monolithic image
filtering,” IEEE J. Solid-State Circuits, vol.33, issue 3, pp.378-386, March 1998.
[104] T. K. Nguyen, S. K. Han, and S. G. Lee, “Ultra-low-power 2.4 GHz IR low-noise
amplifier,” Electron. Lett., vol. 41, issue 15, pp.842-843, July 2005.
[105] T. K. Nguyen, N. J. Oh, C. Y. Cha, Y. H. Oh, G. J. Ihm, and S. G. Lee, “IR CMOS
low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory
Tech., vol. 53, issue 2, pp.538-547, Feb 2005.
[106] J. Gil, K. Han, and H. Shin, “13 GHz 4.67 dB NF CMOS low-noise amplifier,”
Electron. Lett., vol. 39, issue 14, pp. 1056-1058, 10 July 2003.
[107] K. L. Deng, M. D. Tsai, C. S. Lin, K. Y. Lin, H. Wang, S.H. Wang, W.Y. Lien, and
G.J. Chem, “A Ku-band CMOS low-noise amplifier,” IEEE International
Radio-Frequency Integration Technology, Nov. 2005, pp.183-186.
[108] W. L. Chen, S. F. Chang, G. W. Huang,Y. S. Jean, and T. H. Yeh, “A Ku-Band
Interference-Rejection CMOS Low-Noise Amplifier Using Current-Reused Stacked
Common-Gate Topology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.10,
pp.718-720, Oct. 2007.
134
[109] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang, and M. F. Chang, “K-Band low-noise
amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett.,
vol. 14, no. 3, pp. 106-108, Mar. 2004.
[110] B. A. Floyd, L. Shi, Y. Taur, I. Lagnado, and K. K. O, “A 23.8-GHz SOI CMOS tuned
amplifier, ” IEEE Trans. Microw. Theory Tech., vol. 50, no. 50, pp. 2193-2195, Sep.
2002.
[111] S. C. Shin, M. Tsai, R. Liu, K. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise
amplifier using 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett.,
vol. 15, no. 7, pp. 448-450, July 2005.
[112] A. Masud, H. Zirath, M. Ferndahl, and H.O. Vickes, “90-nm CMOS MMIC amplifier,”
RF Integrated Circuits Dig., Jun. 2004, pp. 201-204.
[113] H. L. Tu, T. Y. Yang, K.H. Liang, and H.K. Chiou, “A 30 GHz 10 dB Low Noise
Amplifier Using Standard 0.18-μm CMOS Technology,” Microwave and Optical
Technology Lett., vol. 49, no. 3, pp. 647-649, Mar. 2007.
[114] H. Y. Liao, K. C. Liang, and H. K. Chiou, “A Compact and Low Power Consumption
K-band Differential Low Noise Amplifier Design Using Transformer Feedback
Technique,” IEEE Asia-Pacific Microwave Conference, Dec. 11-14 2007, pp. 571-574.
[115] ITRS, http://public.itrs.net.
[116] C. W. Kim, and S. G. Lee, “A 5.25-GHz image rejection RF front-End Receiver with
Polyphase filters,” IEEE Microw. Wireless Compon. Lett., vol. 16, issue 5, pp.302-304,
May 2006.
[117] J. A. Macedo, and M. A. Copeland, “A 1.9-GHz silicon receiver with monolithic image
filtering,” IEEE J. Solid-State Circuits, vol.33, issue 3, pp.378-386, March 1998.
135
[118] T. K. Nguyen, S. K. Han, and S. G. Lee, “Ultra-low-power 2.4 GHz IR low-noise
amplifier,” Electron. Lett., vol. 41, issue 15, pp.842-843, 21 July 2005.
[119] T. K. Nguyen, N. J. Oh, C. Y. Cha, Y. H. Oh, G.J. Ihm, and S.G. Lee, “IR CMOS
low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory
Tech., vol. 53, issue 2, pp.538-547, Feb 2005.
[120] H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS Wireless LAN Receiver
Front End,” IEEE J. Solid-state Circuits, vol. 35, no. 5, pp. 765-771, May 2000.
[121] J. W. M Rogers, and C Plett, “A 5 GHz Radio Front-End with Automatically Q Tuned
Notch Filter,” in IEEE Proc. Bipolur/BiCMOS Circuits and Technologv Meeting, pp.
69-72, Oct. 2002.
[122] M. A. Copeland, S. P. Voinigescu, D. Marchesan, P. Popescu, and M. C. Malerpard,
“5-GHz SiGe HBT Monolithic Radio Transceiver with Tunable Filtering,” IEEE Trans.
Microw. Theory and Tech., vol. 48, no. 2, pp. 170-180, Feb. 2000.
[123] M. A. Margarit, D. Shih, P. J. Sullivan, and F. Ortega, “A 5-GHz BiCMOS RFIC
Front-End for IEEE 802.11d HiperLNA Wireless LNA,” IEEE J. Solid-State Circuit,
vol. 38, no. 7, pp. 1284-1287, July 2003.
[124] J. R. Long, “A Low-Voltage 5.1-5.8 GHz Image-Reject Downconverter RF IC,” IEEE
J. Solid-State Circuits, vol. 35, no. 9, pp. 1320-1328, Sep. 2000.
[125] M. H. Koroglu, and P. E. Allen, “A 1.9GHz image-reject front-end with automatic
tuning in a 0.15-μm CMOS technology”, ISSCC Digest of Technical Papers, Feb. 2003,
pp. 264-265.
[126] M. Zargari, D. K. Su, C. P. Yue, S. Rabii, D. Weber, B. J. Kaczynski, S.
Mehta, K. Singh, S. Mendis, and B. A. Wooley, “A 5-GHz CMOS transceiver for
136
IEEE 802.11a wireless LAN systems,” IEEE J. Solid-State Circuits, vol. 37, no. 12,
pp.1688-1694, Dec. 2002.
[127] Rola A. Baki, and Mourad N. El-Gamal, “Robust Multi-GHz (7.4GHz) On-Chip Image
Rejection in CMOS,” Custom Integrated Circuits Conference, 18-21 Sep. 2005,
pp.341-344.
[128] R. A. Baki, and N. El-Gamal, “A 1.5V multigigahertz CMOS tunable image reject
notch filter,”, The 14th International Conference on Microelectronics, 11-13 Dec. 2002,
pp.144-147.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明