博碩士論文 955301018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.149.229.34
姓名 王姵媖(Pei-Ying Wang)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 寬頻放大器暨V頻段射頻接收機前端電路之研製
(Implementation of Broadband Amplifier and V-Band RF Receiver Front-End Circuits)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究內容為寬頻放大器及V頻帶接收機之前端電路研究,設計的晶片皆利用WIN 0.15 um pHEMT與TSMC 0.18 um CMOS製程研製。論文電路包含3-55 GHz分佈式寬頻放大器、15-50 GHz分佈式寬頻放大器、35-65 GHz串接式寬頻放大器、V頻帶三級串接式低雜訊放大器、27.1 GHz變壓器回授型壓控振盪器、V頻帶次諧波二極體混頻器以及V頻帶次諧波電阻性混頻器。
寬頻放大器設計包含三個電路,其中3-55 GHz分佈式寬頻放大器利用疊接式放大器及電容分容的技巧來設計,量測頻寬為1-53 GHz,功率增益為9.43 dB且增益平坦度為正負2 dB,輸入輸出返回損耗皆大於2 dB;15-50 GHz分佈式寬頻放大器利用有限接地共平面波導的優點及二級串接分佈式架構來設計,量測頻寬為13-54 GHz,功率增益為10.45 dB且增益平坦度為正負1.2 dB,輸入輸出返回損耗皆大於5 dB;35-65 GHz串接式寬頻放大器利用四級串接放大器及自给偏壓的方式來設計,量測頻寬為28-59 GHz,功率增益介於13至26 dB,輸入輸出返回損耗皆大於3.9 dB。
V頻帶接收機前端電路包含四個電路,其中V頻帶三級串接式低雜訊放大器利用源極電感退化技巧來達到輸入及雜訊匹配的最佳化,頻率在60 GHz,功率增益為24.35 dB,輸入輸出返回損耗皆大於2.58 dB,雜訊指數為3.2 dB;27.1 GHz變壓器回授型壓控振盪器利用變壓器來獲得較低的相位雜訊,在1 MHz的相位雜訊為-94 dBc/Hz,輸出功率為-15 dBm,可調頻率範圍為847 MHz;V頻帶次諧波二極體混頻器,在射頻訊號60 GHz時有最小轉換損耗12.075 dB,輸入功率1-dB壓縮點為 4 dBm,輸入三階截斷點為15 dBm;V頻帶次諧波電阻性混頻器,在射頻訊號60 GHz時有最小轉換損耗10.593 dB,輸入功率1-dB壓縮點為9 dBm,輸入三階截斷點為13 dBm。
摘要(英) The work in this thesis focuses on broadband amplifiers and V-band RF receiver front-end circuits. The designed circuits include three broadband amplifiers with different topologies and bandwidths, a V-band low noise amplifier, a 27.1 GHz transformer feedback voltage control oscillator, a V-band subharmonic diode mixer and a V-band subharmonic resistive mixer. Those designs were fabricated in WIN 0.15 um pHEMT technology and TSMC 0.18 um CMOS process.
The thesis first addresses the performance and design of three different broadband amplifiers. The 3-55 GHz distributed amplifier made use of a pHEMT cascode gain cell capacitively coupled to the gate line. The circuit has been experimentally verified for its functionality. This circuit achieved a gain of 9.43±2 dB from 1 to 53 GHz, and the input/output return losses of more than 2 dB. The 15-50 GHz distributed amplifier was implemented with two-cascaded three-stage topology and the finite-ground coplanar waveguide for the transmission line design. The measured result showed this circuit had a gain of 10.5±1.2 dB from 13 to 54 GHz, and the input/output return losses of more than 6 dB. The 35-65 GHz broadband amplifier was designed with the four-cascaded single-stage scheme to achieve the high gain in the high frequency. The self-bias architecture was also used for the single positive supply operation. The cascade amplifier exhibited a gain of 13-26 dB in the bandwidth from 28 to 59 GHz, and the input/output return losses of more than 3.92 dB.
The thesis further addresses V-band RF receiver front-end circuits. The V-band three-stage-cascaded LNA architecture was a derivative of the inductive source degenerated topology. The LNA achieved a gain of 24.35 dB at 60 GHz, a noise figure of 3.2 dB, and the input/output return losses of more than 2.58 dB. The 27.1 GHz transformer feedback voltage controlled oscillator utilized the transformer to lower the phase noise. This voltage controlled oscillator obtained a tuning range of 847 MHz, an output power of -15 dBm, and the phase noise of -94 dBc/Hz at 1 MHz offset. The V-band subharmonic diode mixer was based on an antiparallel Schottky diode pair. The design exhibited a 12.075 dB conversion loss at the RF frequency of 60 GHz, the LO frequency of 27.1 GHz, and the IF frequency of 5.8 GHz. The measured input power at the 1-dB gain compression point was 4 dBm, and the input third order inter-modulation intercept point was 15 dBm. The V-band subharmonic resistive mixer achieved a 10.593 dB conversion loss at the RF frequency of 60 GHz, the LO frequency of 27.1 GHz, and the IF frequency of 5.8 GHz. The measured input power at the 1-dB gain compression point was 9 dBm, and the input third order inter-modulation intercept point was 13 dBm.
關鍵字(中) ★ 次諧波混頻器
★ 振盪器
★ 低雜訊放大器
★ V頻帶
★ 分佈式放大器
★ 寬頻放大器
關鍵字(英) ★ Subharmonic Mixer
★ VCO
★ Oscillator
★ LNA
★ Low Noise Amplifier
★ V Band
★ Distributed Amplifier
★ Broadband Amplifier
論文目次 摘 要i
誌 謝iv
目 錄vi
圖目錄ix
表目錄xiv
第一章 緒論1
1-1 研究動機1
1-2 研究成果2
1-3 章節簡述3
第二章 分佈式寬頻放大器4
2-1 分佈式寬頻放大器簡介4
2-1.1分佈式寬頻放大器原理4
2-1.2閘極汲極傳輸線的衰減5
2-1.3傳統式分佈式放大器7
2-1.4串接式分佈式放大器8
2-2 3-55 GHz分佈式寬頻放大器9
2-2.1電路設計重點9
2-2.2電路主要架構10
2-2.3電路模擬與量測結果11
2-2.4結果討論18
2-3 15-50 GHz分佈式寬頻放大器( Two-Cascaded Three-Stage DA )19
2-3.1電路設計重點19
2-3.2電路主要架構20
2-3.3電路模擬與量測結果21
2-3.4結果討論27
2-4 30-65 GHz串接式寬頻放大器(Four-Cascaded Single-Stage DA)28
2-4.1電路設計重點28
2-4.2電路主要架構29
2-4.3電路模擬與量測結果30
2-4.4結果討論36
第三章 V頻帶低雜訊放大器37
3-1 低雜訊放大器簡介37
3-1.1雜訊來源37
3-1.2雜訊指數介紹38
3-1.3低雜訊放大器的重要參數介紹40
3-2 V頻帶低雜訊放大器41
3-2.1電路設計重點41
3-2.2電路主要架構及設計流程41
3-2.3電路的模擬與量測結果43
3-2.4結果討論48
第四章 27.1 GHz壓控振盪器49
4-1 壓控振盪器簡介49
4-1.1振盪器原理及重要規格參數49
4-1.2振盪器重要規格參數50
4-2 27.1 GHz 變壓器回授型壓控振盪器52
4-2.1電路設計重點52
4-2.2電路主要架構及設計流程53
4-2.3電路的模擬與量測結果54
4-2.4結果討論58
第五章V頻帶次諧波混頻器59
5-1 混頻器簡介與原理59
5-1.1混頻器重要參數60
5-2 V頻帶次諧波二極體混頻器62
5-2.1電路設計重點62
5-2.2電路主要架構及設計流程63
5-2.3電路模擬與量測結果65
5-2.4結果討論70
5-3 V頻帶次諧波電阻性混頻器71
5-3.1電路設計重點71
5-3.2電路主要架構及設計流程71
5-3.3電路模擬與量測結果74
5-3.4結果討論79
第六章 結論80
6-1 結論80
6-2 未來期許與研究方向82
參考文獻83
參考文獻 [1]M. Häfele, A. Trasser, K. Beilenhoff, H. Schumacher, “A GaAs distributed amplifier with an output voltage of 8.5Vpp for 40Gb/s modulators,” Gallium Arsenide and Other Semiconductor Application Symposium, Oct. 2005, pp. 345-348.
[2]XD1002 product datasheet, Mimix Broadband Inc. Houston. 2002. www.mimixbroadband.com
[3]M. Häfele, K. Beilenhoff, and H. Schumacher, “A GaAs PHEMT distributed amplifier with low group delay time variation for 40 GBit/s optical systems,” European Microwave Conference, Oct. 2003, pp. 1091-1094.
[4]M. Häfele, K. Beilenhoff, and H. Schumacher, “GaAs distributed amplifiers with up to 350 GHz gain-bandwidth product for 40 Gb/s LiNbO3 modulator drivers,” European Microwave Conference, vol. 1, Oct. 2005.
[5]Y. Ayasli, S. -W. Miller, R. -L. Mozzi, and L. -K. Hanes, “Capacitively coupled travelling-wave power amplifier,” IEEE Transactions on Electron Devices, vol. 31, pp.1937-1942, 1984.
[6]S. - N. Prasad, J. - B. Beyer, R. - C. Becker, and I. - S. Chang, “Power-bandwidth considerations in the design of MESFET distributed amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, pp. 1117-1123, Jul.1988.
[7]P. - S. Wu, T. - W. Huang, and H. Wang, “An 18-71 GHz multi-band and high gain GaAs MMIC medium power amplifier for millimeter-wave applications,” IEEE MTT-S, Jun. 2003, pp. 863-866.
[8]XD1001 product datasheet, Mimix Broadband Inc. Houston. 2002. www.mimixbroadband.com
[9]M. - C. Chuang, M. - F. Lei, and H. Wang, “A broadband medium power amplifier for millimeter applications,” vol. 3, Dec. 2005, APMC.
[10]H. Shigematsu, N. Yoshida, M. Sato, T. Hirose, and Y. Watanabe, “45-GHz distributed amplifier with a linear 6-Vp-p output for a 40-Gb/s LiNbO modulator driver circuit,” Gallium Arsenide Integrated Circuit Symposium, vol. 1, Jun. 2001, pp. 137-140.
[11]XL1001 product datasheet, Mimix Broadband Inc. Houston. 2002. www.mimixbroadband.com
[12]K. - L. Deng, T. - W. Huang, and H. Wang “Design and analysis of novel high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages”, IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 2188-2196, Nov. 2003.
[13]B. - Y. Banyamin and M. Berwick, “The gain advantages of four cascaded single stage distributed amplifier configurations,” IEEE MTT-S, Jun. 2000, pp. 1325-1328.
[14]AppNote_CFS0103-SB_Biasing.doc, www.mimixbroadband.com
[15]Y. Mimino, K. Nakamura, Y. Hasegawa, Y. Aoki, S. Kuroda, and T. Tokumitsu, “A 60 GHz millimeter-wave MMIC chipset for broadband wireless access system front-end,” IEEE MTT-S, vol. 3, Jun. 2002, pp. 1721-1724.
[16]K. Nishikawa, B. Piernas, K. Kamogawa, T. Nakagawa, and K. Araki, “Compact LNA and VCO 3-D MMICs using commercial GaAs PHEMT technology for V-band single-chip TRX MMIC,” IEEE MTT-S, vol. 3, Jun. 2002, pp. 1717-1720.
[17]A. Bessemoulin et al., “Comparison of coplanar 60-GHz low-noise amplifiers Based on a GaAs PM-HEMT technology,” IEEE Microwave and Guided Wave Letter, vol. 8, pp. 396-398, Nov. 1998.
[18]楊家軍,“V應用於V頻段射頻接收機前端電路之研製” ,碩士論文,國立中央大學,2007。
[19]T. Song, S. Ko, D. - H. Cho, H. - S. Oh, C. Chung, and E. Yoon, “A 5GHz transformer-coupled CMOS VCO using bias-level shifting technique,” RFIC, Jun. 2004, pp. 127-130.
[20]D. Robertson, and S. Lucyszyn, “RFIC and MMIC design and technology,” London Institution of Electrical Engineers, 2001.
[21]連婉茹,“V頻段微型化混波器之研製” ,碩士論文,國立中央大學,2006。
[22]K. Bowers and P. Riehl, “Broadband Microwave Distributed Amplifier”.
[23]Bal S. Virdee, Avtar S. Viredee, and Ben Y. Banyamin, “Broadband Microwave Amplifiers,” Artech House, 2005.
[24]M. Sato, T. Hirose, and Y. Watanabe, “A 70-GHz bandwidth and 9-dB gain travelling wave amplifier Using 0.15-um Gate InGaP/InGaAs HEMTs with coplanar transmission line technology,” European Microwave Conference, Oct. 2000, pp. 1-4.
[25]M. Leich, M. Ludwig, H. Massler, A. Hulsmann, and M. Schlechtweg, “Two-stage ultra-broadband driver for optical modulator,” Electronics Letters, vol. 36, no. 22, pp. 1862-1863, Oct. 2000.
[26]S. Cai, and Z. Wang, “0-80GHz 0.15 um GaAs pHEMT distributed amplifier for optic-fiber transmission systems,” ICMMT, Apr. 2007, pp 1-3.
[27]G. - E. Ponchak, L. - P. - B Katehi, E. - M. Tentzeris, “Finite ground coplanar (FGC) waveguide: It’s characteristics and advantages for use in RF and Wireless communication circuits”.
[28]N. S. Rainee, “Coplanar Waveguide Circuit, Components, and System,” Wiley Interscience, A John Wiley & Sons, Inc. Publication.
[29]C. - P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device application,” IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 1087-1090, Dec. 1969.
[30]HMC283 Data, Hittite Microwave Corporation, Chelmsford, MA, 2002.
[31]K. - Y. Lin, I - S. Chen, and H. - K. Chiou, “A 26 - 65 GHz GaAs pHEMT cascaded single stage distributed amplifier with high gain/area efficiency,” APMC, vol. 2, Dec. 2006, pp. 722-725.
[32]呂學士編譯,本城何彥原著,微波通訊半導體電路,全華科技股份有限公司,民國89年。
[33]John Roger and Calvin Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
[34]K. Fujii, M. Adamski, P. Bianco, D. Gunyan, J. Hall, R. Kishimura, C. Lesko, M. Schefer, S. Hessel, H. Morkner, and A. Niedzwiecki, “A 60GHz MMIC chipset for 1-Gbith wireless links,” IEEE MTT-S , vol. 3, Jun. 2002, pp. 1725-1728.
[35]B. - J. Jang, I. - B. Yom, and S. - P. Lee, “Millimeter wave MMIC low noise amplifiers using a 0.15 um commercial pHEMT process,” ETRI Journal, vol 24, Jun. 2002.
[36]李泰成審校,Behzad Razavi原著,類比 COMS 積體電路設計,滄海書局,民國94年。
[37]賴永齡、黃建彰及邱煥凱,微波積體電路設計,民國96年。
[38]C. - R. - C. De Ranter and M. - S. - J. Steyaert, “A 0.25-μm CMOS 17 GHz VCO,” IEEE International Solid-State Circuit Conference, Feb 2001, pp. 370-371.
[39]S. Ko, J. - G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz Integrated CMOS Frequency Sources with a Quadrature VCO using Transformers,” RFIC, Jun. 2004, pp. 269-272.
[40]T. - P. Wang, R. - C. Liu, H. - Y. Chang, L. - H. Lu, and H. Wang, “A 22-GHz Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 859–861, Dec. 2005.
[41]S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, pp.673–675, Oct. 2005.
[42]W. - L. Ng, G. - C. - T. Leung, K. - C. Kwok, L. - L. - K. Leung, and H. - C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18 μm CMOS,” IEEE International Solid-State Circuit Conference ,vol. 1, Feb. 2005, pp. 158-159, 590.
[43]M. - W. Chapman, and S. Raman, “A 60-GHz uniplanar MMIC 4/spl times/ subharmonic mixer,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp.2580-2588, Nov. 2002
[44]K. - W. Yeom, D. - H. Ko, “A novel 60-GHz monolithic star mixer using gate drain-connected pHEMT diodes,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, Jul. 2005.
[45]M. Varonen, M. Karkkainen, J. Riska, P. Kangaslahti, K. - A. - I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1322-1330, 2005.
[46]S. - E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE Journal of Solid-State Circuits ,vol. 40, pp. 2174 - 2186, 2005.
[47]S. - E. Gunnarsson and H. Zirath, “A 60 GHz MMIC dual-quadrature mixer in pHEMT technology for ultra wideband IF signals and high LO to RF isolation,” IEEE MTT-S, 2005, pp.4.
[48]S. Gunnarsson, D. Kuylenstierna, and H. Zirath,” A 60 GHz MMIC pHEMT image reject mixer with integrated ultra wideband IF hybrid and 30 dB of image rejection ratio,” APMC, vol. 1, Dec. 2005.
[49]M. - F. Lei, P. - S. Wu, T. - W. Huang, and H. Wang, “Design and analysis of a miniature W-band MMIC subharmonically pumped resistive mixer,” IEEE MTT-S, vol. 1, 2004, pp. 235-238.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明